Lixin Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6983836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relativistic X-Ray Reverberation from Super-Eddington Accretion Flow. Astrophysical Journal, 2022, 925, 151.	1.6	1
2	Revisiting the Rates and Demographics of Tidal Disruption Events: Effects of the Disk Formation Efficiency. Astrophysical Journal Letters, 2022, 927, L19.	3.0	4
3	The Physics of Accretion Discs, Winds and Jets in Tidal Disruption Events. Space Science Reviews, 2021, 217, 1.	3.7	12
4	The Process of Stellar Tidal Disruption by Supermassive Black Holes. Space Science Reviews, 2021, 217, 1.	3.7	16
5	Discovery of a Fast Iron Low-ionization Outflow in the Early Evolution of the Nearby Tidal Disruption Event AT 2019qiz. Astrophysical Journal, 2021, 917, 9.	1.6	17
6	Observable gravitational waves from tidal disruption events and their electromagnetic counterpart. Monthly Notices of the Royal Astronomical Society, 2021, 510, 2025-2040.	1.6	6
7	Enhancement of the tidal disruption event rate in galaxies with a nuclear star cluster: from dwarfs to ellipticals. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2276-2285.	1.6	24
8	Simulations of Tidal Disruption Events. Space Science Reviews, 2020, 216, 1.	3.7	4
9	Tidal disruption events in the first billion years of a galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3944-3956.	1.6	9
10	X-Ray Fluorescence from Super-Eddington Accreting Black Holes. Astrophysical Journal Letters, 2019, 884, L21.	3.0	11
11	The Spectral Evolution of AT 2018dyb and the Presence of Metal Lines in Tidal Disruption Events. Astrophysical Journal, 2019, 887, 218.	1.6	72
12	A Unified Model for Tidal Disruption Events. Astrophysical Journal Letters, 2018, 859, L20.	3.0	200
13	Ultrafast outflow in tidal disruption event ASASSN-14li. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3593-3598.	1.6	57
14	Can tidal disruption events produce the IceCube neutrinos?. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1354-1359.	1.6	58
15	Energetic constraints on electromagnetic signals from double black hole mergers. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 470, L92-L96.	1.2	18
16	Tidal disruption events by a massive black hole binary. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1712-1727.	1.6	25
17	Relativistic reverberation in the accretion flow of a tidal disruption event. Nature, 2016, 535, 388-390.	13.7	58
18	SOFT X-RAY TEMPERATURE TIDAL DISRUPTION EVENTS FROM STARS ON DEEP PLUNGING ORBITS. Astrophysical Journal Letters, 2015, 812, L39.	3.0	116

Lixin Dai

#	Article	IF	CITATIONS
19	Efficiency of super-Eddington magnetically-arrested accretion. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 454, L6-L10.	1.2	69
20	Adiabatic evolution of mass-losing stars. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2940-2947.	1.6	8
21	Roche accretion of stars close to massive black holes. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2948-2960.	1.6	27
22	THE IMPACT OF BOUND STELLAR ORBITS AND GENERAL RELATIVITY ON THE TEMPORAL BEHAVIOR OF TIDAL DISRUPTION FLARES. Astrophysical Journal Letters, 2013, 775, L9.	3.0	50
23	Quasi-periodic flares from star-accretion-disc collisions. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1614-1624.	1.6	20
24	Transport equation for the two-dimensional electron liquid under microwave radiation and a magnetic field: Explanation for the zero-resistance state. Physical Review B, 2005, 72, .	1.1	18