
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6982816/publications.pdf Version: 2024-02-01

Υσης Ζηγης

#	Article	IF	CITATIONS
1	Deep-Red Electroluminescent Polymers:Â Synthesis and Characterization of New Low-Band-Gap Conjugated Copolymers for Light-Emitting Diodes and Photovoltaic Devices. Macromolecules, 2005, 38, 244-253.	2.2	378
2	Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione. Chemistry of Materials, 2010, 22, 2696-2698.	3.2	346
3	Development of New Conjugated Polymers with Donorâ^'ï€-Bridgeâ 'Acceptor Side Chains for High Performance Solar Cells. Journal of the American Chemical Society, 2009, 131, 13886-13887.	6.6	335
4	Indacenodithiophene and Quinoxaline-Based Conjugated Polymers for Highly Efficient Polymer Solar Cells. Chemistry of Materials, 2011, 23, 2289-2291.	3.2	318
5	Synthesis and Electroluminescent Properties of High-Efficiency Saturated Red Emitter Based on Copolymers from Fluorene and 4,7-Di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole. Macromolecules, 2004, 37, 6299-6305.	2.2	242
6	Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers. Chemical Communications, 2011, 47, 11026.	2.2	241
7	Multicolor Fluorescent Semiconducting Polymer Dots with Narrow Emissions and High Brightness. ACS Nano, 2013, 7, 376-384.	7.3	197
8	A Simple and Effective Way of Achieving Highly Efficient and Thermally Stable Bulk-Heterojunction Polymer Solar Cells Using Amorphous Fullerene Derivatives as Electron Acceptor. Chemistry of Materials, 2009, 21, 2598-2600.	3.2	191
9	Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer. Macromolecules, 2012, 45, 5427-5435.	2.2	186
10	High-Efficiency Saturated Red Emitting Polymers Derived from Fluorene and Naphthoselenadiazole. Macromolecules, 2004, 37, 1211-1218.	2.2	166
11	Effect of Chemical Modification of Fullerene-Based Self-Assembled Monolayers on the Performance of Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 1892-1902.	4.0	166
12	Squaraine-Based Polymer Dots with Narrow, Bright Near-Infrared Fluorescence for Biological Applications. Journal of the American Chemical Society, 2015, 137, 173-178.	6.6	145
13	Thermally Cross-Linkable Hole-Transporting Materials on Conducting Polymer: Synthesis, Characterization, and Applications for Polymer Light-Emitting Devices. Chemistry of Materials, 2008, 20, 413-422.	3.2	119
14	Synthesis, Characterization, Charge Transport, and Photovoltaic Properties of Dithienobenzoquinoxaline- and Dithienobenzopyridopyrazine-Based Conjugated Polymers. Macromolecules, 2011, 44, 4752-4758.	2.2	111
15	Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione units: synthesis, field-effect transistors and bulk heterojunction polymer solar cells. Journal of Materials Chemistry, 2011, 21, 3895.	6.7	110
16	High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester processed with oleic acid surfactant. Applied Physics Letters, 2007, 90, 183512.	1.5	103
17	High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3,4-c]pyridine units for thin film transistor and photovoltaic applications. Journal of Materials Chemistry, 2011, 21, 13247.	6.7	102
18	Benzobis(silolothiophene)-Based Low Bandgap Polymers for Efficient Polymer Solar Cells. Chemistry of Materials, 2011, 23, 765-767.	3.2	101

YONG ZHANG

#	Article	IF	CITATIONS
19	Highly Efficient White Polymer Lightâ€Emitting Diodes Based on Nanometerâ€Scale Control of the Electron Injection Layer Morphology through Solvent Processing. Advanced Materials, 2008, 20, 1565-1570.	11.1	97
20	Alcohol-Soluble n-Type Conjugated Polyelectrolyte as Electron Transport Layer for Polymer Solar Cells. Macromolecules, 2015, 48, 5578-5586.	2.2	97
21	Electrophosphorescent Chelating Copolymers Based on Linkage Isomers of Naphthylpyridineâ^Iridium Complexes with Fluorene. Macromolecules, 2006, 39, 1693-1700.	2.2	96
22	Poly(3,6-silafluorene-co-2,7-fluorene)-based high-efficiency and color-pure blue light-emitting polymers with extremely narrow band-width and high spectral stability. Journal of Materials Chemistry, 2006, 16, 4133.	6.7	95
23	Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells. Macromolecules, 2013, 46, 5497-5503.	2.2	94
24	Cancer Cell Membrane-Biomimetic Nanoprobes with Two-Photon Excitation and Near-Infrared Emission for Intravital Tumor Fluorescence Imaging. ACS Nano, 2018, 12, 1350-1358.	7.3	88
25	Giant Extended Ï€-Conjugated Dendrimers Containing the 10,15-Dihydro-5H-diindeno[1,2-a;1â€~,2â€~-c]fluorene Chromophore:Â Synthesis, NMR Behaviors, Optical Properties, and Electroluminescence. Journal of Organic Chemistry, 2004, 69, 6050-6058.	1.7	86
26	Quinoxaline-based conjugated polymers for polymer solar cells. Polymer Chemistry, 2017, 8, 4613-4636.	1.9	85
27	Interpolyelectrolyte Complexes of Anionic Water-Soluble Conjugated Polymers and Proteins as Platforms for Multicolor Protein Sensing and Quantification. Macromolecules, 2008, 41, 4003-4011.	2.2	79
28	UV-light-assisted NO2 gas sensor based on WS2/PbS heterostructures with full recoverability and reliable anti-humidity ability. Sensors and Actuators B: Chemical, 2021, 339, 129902.	4.0	75
29	Fused Perylene Diimide-Based Polymeric Acceptors for Efficient All-Polymer Solar Cells. Macromolecules, 2017, 50, 7559-7566.	2.2	74
30	Chemically Doped and Cross-linked Hole-Transporting Materials as an Efficient Anode Buffer Layer for Polymer Solar Cells. Chemistry of Materials, 2011, 23, 5006-5015.	3.2	73
31	Improved thin film morphology and bulk-heterojunction solar cell performance through systematic tuning of the surface energy of conjugated polymers. Journal of Materials Chemistry, 2012, 22, 5587.	6.7	73
32	Conjugated Polyelectrolyte Based Fluorescence Turn-On Assay for Real-Time Monitoring of Protease Activity. Analytical Chemistry, 2010, 82, 8604-8610.	3.2	72
33	Novel perylene diimide-based polymers with electron-deficient segments as the comonomer for efficient all-polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 414-422.	5.2	69
34	Realizing Efficient Single Organic Molecular White Light-Emitting Diodes from Conformational Isomerization of Quinazoline-Based Emitters. ACS Applied Materials & Interfaces, 2020, 12, 14233-14243.	4.0	60
35	Highâ€Performance Inverted Polymer Solar Cells: Device Characterization, Optical Modeling, and Holeâ€Transporting Modifications. Advanced Functional Materials, 2012, 22, 2804-2811.	7.8	58
36	Highly efficient blue organic light-emitting diodes from pyrimidine-based thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2018, 6, 2351-2359.	2.7	58

#	Article	IF	CITATIONS
37	Anionic benzothiadiazole containing polyfluorene and oligofluorene as organic sensitizers for dye-sensitized solar cells. Chemical Communications, 2008, , 3789.	2.2	51
38	High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 15962-15970.	4.0	50
39	Ultralong Rutile TiO ₂ Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 13384-13391.	4.0	49
40	Potential Solution Processible Phosphorescent Iridium Complexes toward Applications in Doped Light-Emitting Diodes:Â Rapid Syntheses and Optical and Morphological Characterizations. Journal of Organic Chemistry, 2006, 71, 6281-6284.	1.7	47
41	Peptide-Mediated Energy Transfer between an Anionic Water-Soluble Conjugated Polymer and Texas Red Labeled DNA for Protease and Nuclease Activity Study. Analytical Chemistry, 2009, 81, 3731-3737.	3.2	46
42	Synthesis and characterization of highly fluorescent europium functionalized β-diketonate complexes. Journal of Luminescence, 2007, 124, 51-57.	1.5	44
43	Zinc-doped SnO ₂ nanocrystals as photoanode materials for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 8076-8082.	5.2	44
44	Recent Development on Narrow Bandgap Conjugated Polymers for Polymer Solar Cells. Polymers, 2017, 9, 39.	2.0	44
45	High-Efficiency Electrophosphorescent Copolymers Containing Charged Iridium Complexes in the Side Chains. Chemistry - A European Journal, 2007, 13, 7432-7442.	1.7	43
46	Highly efficient indacenodithiophene-based polymeric solar cells in conventional and inverted device configurations. Organic Electronics, 2011, 12, 794-801.	1.4	43
47	Highly luminescent, fluorinated semiconducting polymer dots for cellular imaging and analysis. Chemical Communications, 2013, 49, 8256.	2.2	43
48	Effect of MgO Surface Modification on the TiO ₂ Nanowires Electrode for Self-Powered UV Photodetectors. ACS Sustainable Chemistry and Engineering, 2018, 6, 7265-7272.	3.2	43
49	Asymmetrical vs Symmetrical Selenophene-Annulated Fused Perylenediimide Acceptors for Efficient Non-Fullerene Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 6577-6585.	2.5	42
50	Synthesis and Characterization of a Waterâ€5oluble Carboxylated Polyfluorene and Its Fluorescence Quenching by Cationic Quenchers and Proteins. Chemistry - an Asian Journal, 2008, 3, 739-745.	1.7	40
51	Boosting photovoltaic performance of ternary organic solar cells by integrating a multi-functional guest acceptor. Nano Energy, 2021, 90, 106538.	8.2	40
52	Synthesis and optoelectronic characterization of conjugated phosphorescent polyelectrolytes with a neutral Ir complex incorporated into the polymer backbone and their neutral precursors. Journal of Materials Chemistry, 2007, 17, 992-1001.	6.7	38
53	Bright red light-emitting devices based on a novel europium complex doped into polyvinylcarbazole. New Journal of Chemistry, 2007, 31, 569.	1.4	37
54	Two-dimensional benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]difuran-based wide bandgap conjugated polymers for efficient fullerene-free polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 4023-4031.	5.2	37

#	Article	IF	CITATIONS
55	Quinazolineâ€Based Thermally Activated Delayed Fluorecence for Highâ€Performance OLEDs with External Quantum Efficiencies Exceeding 20%. Advanced Optical Materials, 2019, 7, 1801496.	3.6	33
56	Anthracene-Cored Dendrimer for Solution-Processible Blue Emitter: Syntheses, Characterizations, Photoluminescence, and Electroluminescence. Macromolecular Rapid Communications, 2006, 27, 914-920.	2.0	32
57	Asymmetrically 9,10-disubstituted anthracenes as soluble and stable blue electroluminescent molecular glasses. Organic Electronics, 2008, 9, 649-655.	1.4	32
58	Recent advances of non-fullerene organic electron transport materials in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20819-20848.	5.2	29
59	Synthesis and properties of novel electrophosphorescent conjugated polyfluorenes based on aminoalkyl-fluorene and bipyridine with rhenium(I) complexes. Polymer, 2008, 49, 1211-1219.	1.8	27
60	Highly fluorescent hyperbranched BODIPY-based conjugated polymer dots for cellular imaging. Chemical Communications, 2017, 53, 8612-8615.	2.2	27
61	Comparison of Three n-Type Copolymers Based on Benzodithiophene and Naphthalene Diimide/Perylene Diimide/Fused Perylene Diimides for All-Polymer Solar Cells Application. ACS Applied Materials & Interfaces, 2018, 10, 23263-23269.	4.0	26
62	A self-powered ultraviolet photodetector based on TiO ₂ /Ag/ZnS nanotubes with high stability and fast response. Journal of Materials Chemistry C, 2020, 8, 1353-1358.	2.7	26
63	Revealing the role of solvent additives in morphology and energy loss in benzodifuran polymer-based non-fullerene organic solar cells. Journal of Materials Chemistry A, 2021, 9, 26105-26112.	5.2	24
64	Indacenoâ€Based Conjugated Polymers for Polymer Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1700697.	2.0	23
65	Wide-Bandgap Conjugated Polymers Based on Alkylthiofuran-Substituted Benzo[1,2- <i>b</i> i>t,5- <i>b</i> i>t,2498-2505. Macromolecules, 2018, 51, 2498-2505.	2.2	23
66	Highly Efficient Organic Room-Temperature Phosphorescent Luminophores through Tuning Triplet States and Spin–Orbit Coupling with Incorporation of a Secondary Group. Journal of Physical Chemistry Letters, 2019, 10, 7141-7147.	2.1	23
67	Light-induced crosslinkable semiconducting polymer dots. Chemical Science, 2015, 6, 2102-2109.	3.7	22
68	Fusion or non-fusion of quasi-two-dimensional fused perylene diimide acceptors: the importance of molecular geometry for fullerene-free organic solar cells. Journal of Materials Chemistry A, 2019, 7, 27493-27502.	5.2	22
69	Hydrothermal synthesis of a 3D double-sided comb-like ZnO nanostructure and its growth mechanism analysis. Chemical Communications, 2016, 52, 8231-8234.	2.2	21
70	Stable deep blue organic light emitting diodes with CIE of y < 0.10 based on quinazoline and carbazole units. Chinese Chemical Letters, 2020, 31, 1188-1192.	4.8	21
71	Yellow Fluorescent Semiconducting Polymer Dots with High Brightness, Small Size, and Narrow Emission for Biological Applications. ACS Macro Letters, 2014, 3, 1051-1054.	2.3	20
72	Molecular engineering of thermally activated delayed fluorescence emitters to concurrently achieve high performance and reduced efficiency roll-off in organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 9966-9974.	2.7	20

#	Article	IF	CITATIONS
73	Phosphorescent chelating polyelectrolytes and their neutral precursors: Synthesis, characterizations, photoluminescence and electroluminescence. Polymer, 2007, 48, 3468-3476.	1.8	19
74	Synthesis and simultaneously enhanced photovoltaic property of poly[4,4,9,9-tetra(4-octyloxyphenyl)-2,7-indaceno[1,2-b:5,6-b′]dithiophene-alt-2,5-thieno[3,2-b]thiophene]. Polymer, 2013, 54, 607-613.	1.8	19
75	Side chain effect on poly(beznodithiophene-co-dithienobenzoquinoxaline) and their applications for polymer solar cells. Polymer, 2016, 82, 228-237.	1.8	19
76	Tunable lightâ€harvesting polymers containing embedded dipolar chromophores for polymer solar cell applications. Journal of Polymer Science Part A, 2012, 50, 1362-1373.	2.5	18
77	An Asymmetrical Polymer Based on Thieno[2,3- <i>f</i>]benzofuran for Efficient Fullerene-Free Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 1888-1892.	2.5	18
78	Manipulating Polymer Donors Toward a High-Performance Polymer Acceptor Based On a Fused Perylenediimide Building Block With a Built-In Twisting Configuration. ACS Applied Materials & Interfaces, 2019, 11, 29765-29772.	4.0	18
79	Integrated linker-regulation and ring-fusion engineering for efficient additive-free non-fullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12516-12526.	2.7	18
80	Benzo[1,2-b:4,5-b′]difuran Polymer-Based Non-Fullerene Organic Solar Cells: The Roles of Non-Fullerene Acceptors and Molybdenum Oxide on Their Ambient Stabilities and Processabilities. ACS Applied Materials & Interfaces, 2021, 13, 15448-15458.	4.0	18
81	Improved device efficiency and color purity: Spectral redshift and line narrowing for poly [2-methoxy,5-(2-ethylhexyloxy)-1,4-phenylenevinylene] via blending with phenyl-substituted poly [p-phenylene vinylene] derivatives. Applied Physics Letters, 2004, 85, 5170-5172.	1.5	17
82	Modification of TiO2 Nanowire Arrays with Sn Doping as Photoanode for Highly Efficient Dye-Sensitized Solar Cells. Crystals, 2019, 9, 113.	1.0	17
83	Engineering Non-fullerene Acceptors as a Mechanism to Control Film Morphology and Energy Loss in Organic Solar Cells. Energy & Fuels, 2022, 36, 4691-4707.	2.5	17
84	Efficient polymer solar cells based on poly(thieno[2,3- f]benzofuran- co -thienopyrroledione) with a high open circuit voltage exceeding 1AV. Dyes and Pigments, 2017, 146, 543-550.	2.0	16
85	Near infrared polymer light-emitting diodes. Science Bulletin, 2005, 50, 957.	1.7	15
86	Novel chemosensory materials based on polyfluorenes with 2-(2′-pyridyl)-benzimidazole and 5-methyl-3-(pyridin-2-yl)-1,2,4-triazole groups in the side chain. Polymer, 2007, 48, 1245-1254.	1.8	15
87	Interface optimization and fabrication of InAs/GaSb type II superlattice for very long wavelength infrared photodetectors. Superlattices and Microstructures, 2016, 91, 238-243.	1.4	15
88	Chain Engineering of Benzodifuranâ€Based Wideâ€Bandgap Polymers for Efficient Nonâ€Fullerene Polymer Solar Cells. Macromolecular Rapid Communications, 2019, 40, e1900227.	2.0	15
89	A novel quasi-two-dimensional fused-perylenediimide electron acceptor for solvent additive-free non-fullerene organic solar cells. Dyes and Pigments, 2020, 175, 108119.	2.0	15
90	Achieving small non-radiative energy loss through synergically non-fullerene electron acceptor selection and side chain engineering in benzo[1,2- <i>b</i> :4,5- <i>b</i> à€2]difuran polymer-based organic solar cells. Journal of Materials Chemistry A, 2021, 9, 15798-15806.	5.2	14

#	Article	IF	CITATIONS
91	Efficiency improvement of TiO2 nanowire arrays based dye-sensitized solar cells through further enhancing the specific surface area. Journal of Crystal Growth, 2019, 505, 62-68.	0.7	13
92	Highly efficient non-fullerene polymer solar cells from a benzo[1,2- <i>b</i> :4,5- <i>b</i> â€2]difuran-based conjugated polymer with improved stabilities. Journal of Materials Chemistry A, 2020, 8, 11381-11390.	5.2	13
93	Synthesis of an indacenodithiophene-based fully conjugated ladder polymer and its optical and electronic properties. Polymer Chemistry, 2018, 9, 2227-2231.	1.9	12
94	Halogenation on benzo[1,2-b:4,5-bâ€2]difuran polymers for solvent additive-free non-fullerene polymer solar cells with efficiency exceeding 11%. Journal of Materials Chemistry C, 2020, 8, 139-146.	2.7	12
95	Synthesis, characterization and photovoltaic properties of dithienobenzodithiophene-based conjugated polymers. Dyes and Pigments, 2017, 137, 50-57.	2.0	11
96	Simultaneous near-infrared and green fluorescence from single conjugated polymer dots with aggregation-induced emission fluorogen for cell imaging. Journal of Materials Chemistry B, 2018, 6, 7871-7876.	2.9	11
97	Wide Band Gap Polymer Based on Indacenodithiophene and Acenaphthoquinoxaline for Efficient Polymer Solar Cells Application. Polymers, 2017, 9, 578.	2.0	10
98	Indacenodifuran-Based Non-Fullerene Electron Acceptors for Efficient Polymer Solar Cells. ACS Applied Energy Materials, 2020, 3, 6133-6138.	2.5	10
99	Dual-acceptor thermally activated delayed fluorescence emitters: Achieving high efficiency and long lifetime in orange-red OLEDs. Chemical Engineering Journal, 2022, 434, 134728.	6.6	10
100	Recent Progress of Benzodifuranâ€Based Polymer Donors for Highâ€Performance Organic Photovoltaics. Small Science, 2022, 2, .	5.8	10
101	High mobility multibit nonvolatile memory elements based organic field effect transistors with large hysteresis. Organic Electronics, 2016, 35, 53-58.	1.4	9
102	Utilizing intermixing of conjugated polymer and fullerene from sequential solution processing for efficient polymer solar cells. Organic Electronics, 2016, 36, 82-88.	1.4	9
103	Atomic intermixing and segregation at the interface of InAs/GaSb type II superlattices. Superlattices and Microstructures, 2017, 104, 390-396.	1.4	9
104	High efficiency, high color rendering index white organic light-emitting diodes based on thermally activated delayed fluorescence materials. Applied Physics Letters, 2019, 115, .	1.5	9
105	Multifunctional Perylenediimide-Based Cathode Interfacial Materials for High-Performance Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 13657-13665.	2.5	8
106	Pyrimidine-based thermally activated delayed fluorescent materials with unique asymmetry for highly-efficient organic light-emitting diodes. Dyes and Pigments, 2022, 203, 110373.	2.0	8
107	Synthesis of Conjugated Polyphenylene Dendriticβ-Diketones. Chinese Journal of Chemistry, 2006, 24, 1631-1638.	2.6	7
108	Highly Promoting the Performances of Polymer Light-Emitting Diodes via Control of the Residue of a Polar Solvent on an Emissive Layer. ACS Applied Materials & Interfaces, 2017, 9, 18399-18404.	4.0	7

YONG ZHANG

#	Article	IF	CITATIONS
109	The effect of annealing temperature on the optical and electrical properties of cubic MgZnO films grown by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2017, 28, 1644-1651.	1.1	7
110	Investigations of quantum efficiency in type-II InAs/GaSb very long wavelength infrared superlattice detectors. Superlattices and Microstructures, 2016, 92, 330-336.	1.4	6
111	Investigation of dark current mechanisms on type-II InAs/GaSb superlattice very long wavelength infrared detectors. Journal Physics D: Applied Physics, 2016, 49, 165105.	1.3	6
112	ZnO nanorod arrays grown on an AlN buffer layer and their enhanced ultraviolet emission. CrystEngComm, 2017, 19, 6085-6088.	1.3	5
113	Efficient post-treatment-free polymer solar cells from indacenodithiophene and fluorinated quinoxaline-based conjugated polymers. Dyes and Pigments, 2018, 154, 164-171.	2.0	5
114	Novel A-ï€-A-D type perylene diimide acceptor for high-performance fullerene-free organic solar cells. Synthetic Metals, 2022, 286, 117054.	2.1	5
115	Enhanced Electroluminescent Efficiency Based on Functionalized Europium Complexes in Polymer Light-Emitting Diodes. Chinese Physics Letters, 2007, 24, 1376-1379.	1.3	4
116	Effect of methanol treatment on performance of phosphorescent dye doped polymer light-emitting diodes. Synthetic Metals, 2010, 160, 2381-2384.	2.1	4
117	A facile and green template-engaged synthesis of PbSe nanotubes with the assistance of Vc. CrystEngComm, 2018, 20, 5570-5575.	1.3	4
118	Optimal Sr-Doped Free TiO2@SrTiO3 Heterostructured Nanowire Arrays for High-Efficiency Self-Powered Photoelectrochemical UV Photodetector Applications. Crystals, 2019, 9, 134.	1.0	4
119	A Highâ€Performance Selfâ€Powered UVâ€Visibleâ€Infrared Broadband Photodetector Based on a Solutionâ€Processed Bi ₂ Se ₃ /Se Nanorods Heterojunction. Advanced Materials Interfaces, 2022, 9, .	1.9	4
120	Enhancing the performance of polymer light-emitting diode via methanol treatment. Journal of Luminescence, 2011, 131, 756-759.	1.5	3
121	Fabrication and improved photocatalytic activity of n-ZnO nanorod arrays/p-CuO thin film heterojunction. Journal of Materials Science: Materials in Electronics, 2016, 27, 8753-8757.	1.1	3
122	High-performance as-cast non-fullerene polymer solar cells from benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]difuran polymer <i>via</i> a rational copolymer design. Journal of Materials Chemistry C, 2021, 9, 13617-13624.	2.7	3
123	A facile route to synthesis of double-sided TiO2 nanotube arrays for photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2017, 28, 468-473.	1.1	2
124	Annealing-induced interfacial atomic intermixing in InAs/GaSb type II superlattices. Applied Physics Letters, 2017, 111, 172101.	1.5	2
125	Synthesis and Properties of Electrophosphorescent Conjugated Polymers Containing Iridium Complexes in Polymer Backbone. Chemistry Letters, 2008, 37, 742-743.	0.7	1
126	Synthesis and Photovoltaic Properties of a Copolymer based on thieno [2, 3-f] benzofuran and thienopyrroledione. IOP Conference Series: Materials Science and Engineering, 2017, 274, 012161.	0.3	1

#	Article	IF	CITATIONS
127	Optoelectronic properties of new functionalized heteroleptic iridium complex. Central South University, 2011, 18, 63-67.	0.5	0
128	Side-chain effect on the photovoltaic performance of conjugated polymers based on benzodifuran and benzodithiophene-4,8-dione. MRS Advances, 2019, 4, 2001-2007.	0.5	0
129	Metal Nanoparticle Enhanced Organic Solar Cells: A Numerical Study of Structure Property Relationships. , 2011, , .		0
130	Fluorinated phenanthrenequinoxaline-based D-A type copolymers for non-fullerene polymer solar cells. Polymer, 2022, 250, 124867.	1.8	0