
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6982584/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytotoxicity of Carbon Nanomaterials:Â Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene. Environmental Science & Technology, 2005, 39, 1378-1383.	4.6	1,307
2	A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 2018, 36, 258-264.	9.4	1,066
3	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
4	Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 2007, 168, 176-185.	0.4	973
5	Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16968-16973.	3.3	839
6	High-Throughput Synthesis of Single-Layer MoS ₂ Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. ACS Nano, 2014, 8, 6922-6933.	7.3	813
7	Functionalized Nano-MoS ₂ with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano, 2016, 10, 11000-11011.	7.3	812
8	Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate. Accounts of Chemical Research, 2013, 46, 622-631.	7.6	627
9	Understanding the Toxicity of Carbon Nanotubes. Accounts of Chemical Research, 2013, 46, 702-713.	7.6	623
10	Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials, 2010, 31, 7606-7619.	5.7	613
11	Near Infrared Laser-Induced Targeted Cancer Therapy Using Thermoresponsive Polymer Encapsulated Gold Nanorods. Journal of the American Chemical Society, 2014, 136, 7317-7326.	6.6	569
12	Bismuth Sulfide Nanorods as a Precision Nanomedicine for <i>in Vivo</i> Multimodal Imaging-Guided Photothermal Therapy of Tumor. ACS Nano, 2015, 9, 696-707.	7.3	503
13	Experiment on the Synthesis of Element 113 in the Reaction209Bi(70Zn,n)278113. Journal of the Physical Society of Japan, 2004, 73, 2593-2596.	0.7	479
14	Selective Targeting of Gold Nanorods at the Mitochondria of Cancer Cells: Implications for Cancer Therapy. Nano Letters, 2011, 11, 772-780.	4.5	475
15	Recent Advances in Design and Fabrication of Upconversion Nanoparticles and Their Safe Theranostic Applications. Advanced Materials, 2013, 25, 3758-3779.	11.1	437
16	Metabolism of Nanomaterials <i>in Vivo</i> : Blood Circulation and Organ Clearance. Accounts of Chemical Research, 2013, 46, 761-769.	7.6	424
17	Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials, 2011, 32, 1611-1618.	5.7	397
18	The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials, 2009, 30, 611-621.	5.7	388

#	Article	IF	CITATIONS
19	Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for <i>In Vivo</i> Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy. ACS Nano, 2015, 9, 12451-12463.	7.3	388
20	Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere, 2010, 78, 273-279.	4.2	377
21	Biodistribution of Carbon Single-Wall Carbon Nanotubes in Mice. Journal of Nanoscience and Nanotechnology, 2004, 4, 1019-1024.	0.9	355
22	Size-Dependent Ag ₂ S Nanodots for Second Near-Infrared Fluorescence/Photoacoustics Imaging and Simultaneous Photothermal Therapy. ACS Nano, 2017, 11, 1848-1857.	7.3	351
23	Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. Journal of Nanoparticle Research, 2010, 12, 1645-1654.	0.8	348
24	Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. Journal of Nanoparticle Research, 2008, 10, 263-276.	0.8	338
25	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
26	Separation of Hydrogen and Nitrogen Gases with Porous Graphene Membrane. Journal of Physical Chemistry C, 2011, 115, 23261-23266.	1.5	335
27	Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. Journal of Analytical Atomic Spectrometry, 2006, 21, 94-96.	1.6	322
28	Biotransformation of Ceria Nanoparticles in Cucumber Plants. ACS Nano, 2012, 6, 9943-9950.	7.3	319
29	Integration of Nanoassembly Functions for an Effective Delivery Cascade for Cancer Drugs. Advanced Materials, 2014, 26, 7615-7621.	11.1	317
30	Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicology Letters, 2008, 183, 72-80.	0.4	310
31	WS ₂ nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale, 2014, 6, 10394-10403.	2.8	301
32	Surface-Engineered Gold Nanorods: Promising DNA Vaccine Adjuvant for HIV-1 Treatment. Nano Letters, 2012, 12, 2003-2012.	4.5	282
33	Multihydroxylated [Gd@C82(OH)22]nNanoparticles:Â Antineoplastic Activity of High Efficiency and Low Toxicity. Nano Letters, 2005, 5, 2050-2057.	4.5	281
34	Smart Albuminâ€Biomineralized Nanocomposites for Multimodal Imaging and Photothermal Tumor Ablation. Advanced Materials, 2015, 27, 3874-3882.	11.1	278
35	Functionalized MoS ₂ Nanovehicle with Nearâ€Infrared Laserâ€Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteriaâ€Infected Wound Therapy. Small, 2018, 14, e1802290.	5.2	259
36	Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging. Journal of the American Chemical Society, 2011, 133, 8617-8624.	6.6	258

#	Article	IF	CITATIONS
37	Synthesis of BSAâ€Coated BiOI@Bi ₂ S ₃ Semiconductor Heterojunction Nanoparticles and Their Applications for Radio/Photodynamic/Photothermal Synergistic Therapy of Tumor. Advanced Materials, 2017, 29, 1704136.	11.1	257
38	Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem. Nature Communications, 2018, 9, 3390.	5.8	249
39	Use of Synchrotron Radiation-Analytical Techniques To Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity. ACS Nano, 2015, 9, 6532-6547.	7.3	246
40	Emerging Strategies of Nanomaterialâ€Mediated Tumor Radiosensitization. Advanced Materials, 2019, 31, e1802244.	11.1	244
41	Recent Advances in Upconversion Nanoparticlesâ€Based Multifunctional Nanocomposites for Combined Cancer Therapy. Advanced Materials, 2015, 27, 7692-7712.	11.1	243
42	Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner. ACS Applied Materials & Interfaces, 2015, 7, 20568-20575.	4.0	243
43	Revealing the Binding Structure of the Protein Corona on Gold Nanorods Using Synchrotron Radiation-Based Techniques: Understanding the Reduced Damage in Cell Membranes. Journal of the American Chemical Society, 2013, 135, 17359-17368.	6.6	239
44	Broadâ€ 5 pectrum Antibacterial Activity of Carbon Nanotubes to Human Gut Bacteria. Small, 2013, 9, 2735-2746.	5.2	236
45	Chemistry of carbon nanotubes in biomedical applications. Journal of Materials Chemistry, 2010, 20, 1036-1052.	6.7	235
46	Smart MoS ₂ /Fe ₃ O ₄ Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging. Theranostics, 2015, 5, 931-945.	4.6	234
47	Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7449-7454.	3.3	233
48	Grapheneâ€Based Smart Platforms for Combined Cancer Therapy. Advanced Materials, 2019, 31, e1800662.	11.1	233
49	Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. Journal of Hazardous Materials, 2015, 290, 26-33.	6.5	231
50	Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics, 2011, 3, 816.	1.0	226
51	Polydopamine as a Biocompatible Multifunctional Nanocarrier for Combined Radioisotope Therapy and Chemotherapy of Cancer. Advanced Functional Materials, 2015, 25, 7327-7336.	7.8	225
52	Localized Electric Field of Plasmonic Nanoplatform Enhanced Photodynamic Tumor Therapy. ACS Nano, 2014, 8, 11529-11542.	7.3	220
53	Full Assessment of Fate and Physiological Behavior of Quantum Dots Utilizing <i>Caenorhabditis elegans</i> as a Model Organism. Nano Letters, 2011, 11, 3174-3183.	4.5	212
54	Chirality of Glutathione Surface Coating Affects the Cytotoxicity of Quantum Dots. Angewandte Chemie - International Edition, 2011, 50, 5860-5864.	7.2	210

#	Article	IF	CITATIONS
55	Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C ₈₂ (OH) ₂₂ and its implication for de novo design of nanomedicine. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15431-15436.	3.3	200
56	A Sizeâ€Reducible Nanodrug with an Aggregationâ€Enhanced Photodynamic Effect for Deep Chemoâ€Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 11384-11388.	7.2	196
57	Controllable Generation of Nitric Oxide by Nearâ€Infraredâ€Sensitized Upconversion Nanoparticles for Tumor Therapy. Advanced Functional Materials, 2015, 25, 3049-3056.	7.8	194
58	Particokinetics and Extrapulmonary Translocation of Intratracheally Instilled Ferric Oxide Nanoparticles in Rats and the Potential Health Risk Assessment. Toxicological Sciences, 2009, 107, 342-351.	1.4	188
59	The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity. Biomaterials, 2009, 30, 3934-3945.	5.7	177
60	Interfacing Engineered Nanoparticles with Biological Systems: Anticipating Adverse Nano–Bio Interactions. Small, 2013, 9, 1573-1584.	5.2	176
61	Proteinâ€Nanoreactorâ€Assisted Synthesis of Semiconductor Nanocrystals for Efficient Cancer Theranostics. Advanced Materials, 2016, 28, 5923-5930.	11.1	175
62	Nd ³⁺ â€Sensitized Upconversion Metal–Organic Frameworks for Mitochondriaâ€Targeted Amplified Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 2634-2638.	7.2	175
63	TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials, 2015, 40, 107-116.	5.7	172
64	One-pot synthesis of PEGylated plasmonic MoO3–x hollow nanospheres for photoacoustic imaging guided chemo-photothermal combinational therapy of cancer. Biomaterials, 2016, 76, 11-24.	5.7	171
65	Poly(Vinylpyrollidone)―and Selenocysteineâ€Modified Bi ₂ Se ₃ Nanoparticles Enhance Radiotherapy Efficacy in Tumors and Promote Radioprotection in Normal Tissues. Advanced Materials, 2017, 29, 1701268.	11.1	171
66	Bifunctional Platinated Nanoparticles for Photoinduced Tumor Ablation. Advanced Materials, 2016, 28, 10155-10164.	11.1	170
67	Polyoxometalate-Based Radiosensitization Platform for Treating Hypoxic Tumors by Attenuating Radioresistance and Enhancing Radiation Response. ACS Nano, 2017, 11, 7164-7176.	7.3	168
68	Size-tunable synthesis of lanthanide-doped Gd ₂ O ₃ nanoparticles and their applications for optical and magnetic resonance imaging. Journal of Materials Chemistry, 2012, 22, 966-974.	6.7	165
69	Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nature Communications, 2015, 6, 5988.	5.8	164
70	The nano-plasma interface: Implications of the protein corona. Colloids and Surfaces B: Biointerfaces, 2014, 124, 17-24.	2.5	155
71	Comparative toxicity of nanoparticulate/bulk Yb ₂ O ₃ and YbCl ₃ to cucumber (<i>Cucumis sativus</i>). Environmental Science & Technology, 2012, 46, 1834-1841.	4.6	153
72	Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nature Nanotechnology, 2021, 16, 708-716.	15.6	153

#	Article	IF	CITATIONS
73	Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochemical Pharmacology, 2006, 71, 872-881.	2.0	152
74	Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics, 2020, 10, 757-781.	4.6	152
75	Phytotoxicity and biotransformation of La ₂ O ₃ nanoparticles in a terrestrial plant cucumber (<i>Cucumis sativus</i>). Nanotoxicology, 2011, 5, 743-753.	1.6	151
76	Bifunctional Tellurium Nanodots for Photo-Induced Synergistic Cancer Therapy. ACS Nano, 2017, 11, 10012-10024.	7.3	151
77	Engineering Multifunctional DNA Hybrid Nanospheres through Coordinationâ€Driven Selfâ€Assembly. Angewandte Chemie - International Edition, 2019, 58, 1350-1354.	7.2	149
78	Reactive Oxygen Speciesâ€Regulating Strategies Based on Nanomaterials for Disease Treatment. Advanced Science, 2021, 8, 2002797.	5.6	149
79	Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives. ACS Nano, 2010, 4, 2773-2783.	7.3	148
80	Nearâ€Infrared Lightâ€Initiated Hybridization Chain Reaction for Spatially and Temporally Resolved Signal Amplification. Angewandte Chemie - International Edition, 2019, 58, 14877-14881.	7.2	148
81	Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicology and Applied Pharmacology, 2008, 230, 364-371.	1.3	145
82	Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Acta Biomaterialia, 2015, 17, 201-209.	4.1	145
83	Tumor Microenvironment-Responsive Cu ₂ (OH)PO ₄ Nanocrystals for Selective and Controllable Radiosentization via the X-ray-Triggered Fenton-like Reaction. Nano Letters, 2019, 19, 1749-1757.	4.5	142
84	Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale, 2013, 5, 8384.	2.8	141
85	Influences of Structural Properties on Stability of Fullerenols. Journal of Physical Chemistry B, 2004, 108, 11473-11479.	1.2	139
86	The effects of orally administered Ag, TiO 2 and SiO 2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact, 2017, 8, 80-88.	2.4	139
87	A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging. Nature Communications, 2019, 10, 4861.	5.8	139
88	Gdâ€Hybridized Plasmonic Auâ€Nanocomposites Enhanced Tumorâ€Interior Drug Permeability in Multimodal Imagingâ€Guided Therapy. Advanced Materials, 2016, 28, 8950-8958.	11.1	138
89	Xâ€Rayâ€Controlled Generation of Peroxynitrite Based on Nanosized LiLuF ₄ :Ce ³⁺ Scintillators and their Applications for Radiosensitization. Advanced Materials, 2018, 30, e1804046.	11.1	138
90	Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology, 2010, 21, 285103.	1.3	137

#	Article	IF	CITATIONS
91	Intelligent MoS ₂ Nanotheranostic for Targeted and Enzyme-/pH-/NIR-Responsive Drug Delivery To Overcome Cancer Chemotherapy Resistance Guided by PET Imaging. ACS Applied Materials & Interfaces, 2018, 10, 4271-4284.	4.0	137
92	Bifunctional peptides that precisely biomineralize Au clusters and specifically stain cell nuclei. Chemical Communications, 2012, 48, 871-873.	2.2	136
93	Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod. ACS Nano, 2017, 11, 8103-8113.	7.3	135
94	Progress, challenges, and future of nanomedicine. Nano Today, 2020, 35, 101008.	6.2	135
95	Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials, 2019, 189, 11-22.	5.7	132
96	[Gd@C ₈₂ (OH) ₂₂] _{<i>n</i>} Nanoparticles Induce Dendritic Cell Maturation and Activate Th1 Immune Responses. ACS Nano, 2010, 4, 1178-1186.	7.3	131
97	Serial Silver Clusters Biomineralized by One Peptide. ACS Nano, 2011, 5, 8684-8689.	7.3	130
98	Novel Insights into Combating Cancer Chemotherapy Resistance Using a Plasmonic Nanocarrier: Enhancing Drug Sensitiveness and Accumulation Simultaneously with Localized Mild Photothermal Stimulus of Femtosecond Pulsed Laser. Advanced Functional Materials, 2014, 24, 4229-4239.	7.8	130
99	Graphdiyne Nanosheet-Based Drug Delivery Platform for Photothermal/Chemotherapy Combination Treatment of Cancer. ACS Applied Materials & Interfaces, 2018, 10, 8436-8442.	4.0	130
100	A novel mesoporous material for uranium extraction, dihydroimidazole functionalized SBA-15. Journal of Materials Chemistry, 2012, 22, 17019.	6.7	128
101	Enhanced Generation of Non-Oxygen Dependent Free Radicals by Schottky-type Heterostructures of Au–Bi ₂ S ₃ Nanoparticles <i>via</i> X-ray-Induced Catalytic Reaction for Radiosensitization. ACS Nano, 2019, 13, 5947-5958.	7.3	126
102	Chiral Surface of Nanoparticles Determines the Orientation of Adsorbed Transferrin and Its Interaction with Receptors. ACS Nano, 2017, 11, 4606-4616.	7.3	125
103	Walking the line: The fate of nanomaterials at biological barriers. Biomaterials, 2018, 174, 41-53.	5.7	125
104	Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging. Journal of Materials Chemistry, 2012, 22, 6974.	6.7	124
105	Progress and Prospects of Graphdiyneâ€Based Materials in Biomedical Applications. Advanced Materials, 2019, 31, e1804386.	11.1	124
106	Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology, 2015, 9, 262-270.	1.6	123
107	Inhibition of Tumor Growth by Endohedral Metallofullerenol Nanoparticles Optimized as Reactive Oxygen Species Scavenger. Molecular Pharmacology, 2008, 74, 1132-1140.	1.0	117
108	Graphdiyne Nanoparticles with High Free Radical Scavenging Activity for Radiation Protection. ACS Applied Materials & Interfaces, 2019, 11, 2579-2590.	4.0	115

#	Article	IF	CITATIONS
109	A magnetic graphene hybrid functionalized with beta-cyclodextrins for fast and efficient removal of organic dyes. Journal of Materials Chemistry A, 2014, 2, 12296.	5.2	113
110	The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials. NPG Asia Materials, 2012, 4, e32-e32.	3.8	112
111	Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. Chemical Science, 2019, 10, 6932-6943.	3.7	111
112	A Safeâ€byâ€Design Strategy towards Safer Nanomaterials in Nanomedicines. Advanced Materials, 2019, 31, e1805391.	11.1	109
113	Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Science Translational Medicine, 2021, 13, .	5.8	109
114	Ultrasmall [⁶⁴ Cu]Cu Nanoclusters for Targeting Orthotopic Lung Tumors Using Accurate Positron Emission Tomography Imaging. ACS Nano, 2015, 9, 4976-4986.	7.3	108
115	Species-specific toxicity of ceria nanoparticles to <i>Lactuca</i> plants. Nanotoxicology, 2015, 9, 1-8.	1.6	106
116	Surface-Functionalized Modified Copper Sulfide Nanoparticles Enhance Checkpoint Blockade Tumor Immunotherapy by Photothermal Therapy and Antigen Capturing. ACS Applied Materials & Interfaces, 2019, 11, 13964-13972.	4.0	105
117	An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment. Science Advances, 2020, 6, eaba9381.	4.7	105
118	Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chemical Society Reviews, 2013, 42, 8266.	18.7	104
119	A Heterojunction Structured WO _{2.9} -WSe ₂ Nanoradiosensitizer Increases Local Tumor Ablation and Checkpoint Blockade Immunotherapy upon Low Radiation Dose. ACS Nano, 2020, 14, 5400-5416.	7.3	104
120	Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA. Journal of Controlled Release, 2014, 176, 104-114.	4.8	102
121	Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. Journal of Nanoparticle Research, 2009, 11, 41-53.	0.8	101
122	Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 136-146.	1.7	101
123	Nearâ€Infrared Lightâ€Initiated Hybridization Chain Reaction for Spatially and Temporally Resolved Signal Amplification. Angewandte Chemie, 2019, 131, 15019-15023.	1.6	101
124	Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes. Nanoscale, 2019, 11, 13289-13299.	2.8	100
125	Selfâ€Assembly of Copper–DNAzyme Nanohybrids for Dualâ€Catalytic Tumor Therapy. Angewandte Chemie - International Edition, 2021, 60, 14324-14328.	7.2	100
126	Peptide-Conjugated Gold Nanoprobe: Intrinsic Nanozyme-Linked Immunsorbant Assay of Integrin Expression Level on Cell Membrane. ACS Nano, 2015, 9, 10979-10990.	7.3	99

#	Article	IF	CITATIONS
127	Combination of tumour-infarction therapy and chemotherapy via the co-delivery of doxorubicin and thrombin encapsulated in tumour-targeted nanoparticles. Nature Biomedical Engineering, 2020, 4, 732-742.	11.6	99
128	TWEEN coated NaYF4:Yb,Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. RSC Advances, 2012, 2, 7037.	1.7	98
129	An Acidicâ€Microenvironmentâ€Driven DNA Nanomachine Enables Specific ATP Imaging in the Extracellular Milieu of Tumor. Advanced Materials, 2019, 31, e1901885.	11.1	97
130	Organelle‧pecific Photoactivation of DNA Nanosensors for Precise Profiling of Subcellular Enzymatic Activity. Angewandte Chemie - International Edition, 2021, 60, 8923-8931.	7.2	97
131	Polyhydroxylated Metallofullerenols Stimulate ILâ€1β Secretion of Macrophage through TLRs/MyD88/NFâ€⊮̂B Pathway and NLRP ₃ Inflammasome Activation. Small, 2014, 10, 2362-2372.	5.2	96
132	Shrinkage of pegylated and non-pegylated liposomes in serum. Colloids and Surfaces B: Biointerfaces, 2014, 114, 294-300.	2.5	96
133	Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Science Bulletin, 2015, 60, 3-20.	4.3	96
134	Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnology Advances, 2014, 32, 727-743.	6.0	94
135	Mesoporous NaYbF4@NaGdF4 core-shell up-conversion nanoparticles for targeted drug delivery and multimodal imaging. Biomaterials, 2014, 35, 7666-7678.	5.7	94
136	Stimuli-Responsive Small-on-Large Nanoradiosensitizer for Enhanced Tumor Penetration and Radiotherapy Sensitization. ACS Nano, 2020, 14, 10001-10017.	7.3	93
137	A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292, 803-810.	0.7	92
138	Density Functional Theory-Based Method to Predict the Activities of Nanomaterials as Peroxidase Mimics. ACS Catalysis, 2020, 10, 12657-12665.	5.5	92
139	Ultrasensitive, Multiplex Raman Frequency Shift Immunoassay of Liver Cancer Biomarkers in Physiological Media. ACS Nano, 2016, 10, 871-879.	7.3	91
140	Precision Nanomedicine Development Based on Specific Opsonization of Human Cancer Patient-Personalized Protein Coronas. Nano Letters, 2019, 19, 4692-4701.	4.5	87
141	Multifunctional WS ₂ @Poly(ethylene imine) Nanoplatforms for Imaging Guided Geneâ€Photothermal Synergistic Therapy of Cancer. Advanced Healthcare Materials, 2016, 5, 2776-2787.	3.9	86
142	Design, Synthesis, and Surface Modification of Materials Based on Transitionâ€Metal Dichalcogenides for Biomedical Applications. Small Methods, 2017, 1, 1700220.	4.6	86
143	Immobilized Ferrous Ion and Glucose Oxidase on Graphdiyne and Its Application on One-Step Glucose Detection. ACS Applied Materials & Interfaces, 2019, 11, 2647-2654.	4.0	86
144	Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Analytical Chemistry, 2018, 90, 589-614.	3.2	85

#	Article	IF	CITATIONS
145	Plasmonic AuPt@CuS Heterostructure with Enhanced Synergistic Efficacy for Radiophotothermal Therapy. Journal of the American Chemical Society, 2021, 143, 16113-16127.	6.6	85
146	Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environmental Pollution, 2015, 198, 8-14.	3.7	84
147	Engineered Graphene Oxide Nanocomposite Capable of Preventing the Evolution of Antimicrobial Resistance. ACS Nano, 2019, 13, 11488-11499.	7.3	84
148	Where Does the Transformation of Precipitated Ceria Nanoparticles in Hydroponic Plants Take Place?. Environmental Science & Technology, 2015, 49, 10667-10674.	4.6	82
149	Immunological Responses Induced by Blood Protein Coronas on Two-Dimensional MoS ₂ Nanosheets. ACS Nano, 2020, 14, 5529-5542.	7.3	82
150	Emerging Delivery Strategies of Carbon Monoxide for Therapeutic Applications: from CO Gas to CO Releasing Nanomaterials. Small, 2019, 15, e1904382.	5.2	79
151	Simultaneous Quantification of Multiple Cancer Biomarkers in Blood Samples through DNAâ€Assisted Nanopore Sensing. Angewandte Chemie - International Edition, 2018, 57, 11882-11887.	7.2	77
152	Biological characterizations of [Gd@C82(OH)22] <i>n</i> nanoparticles as fullerene derivatives for cancer therapy. Integrative Biology (United Kingdom), 2013, 5, 43-47.	0.6	76
153	Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. Journal of Analytical Atomic Spectrometry, 2008, 23, 1121.	1.6	75
154	Gadolinium polytungstate nanoclusters: a new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer. NPG Asia Materials, 2016, 8, e273-e273.	3.8	75
155	mTOR Signaling in Parkinson's Disease. NeuroMolecular Medicine, 2017, 19, 1-10.	1.8	74
156	Mesoporous silica SBA-15 functionalized with phosphonate and amino groups for uranium uptake. Science China Chemistry, 2012, 55, 1705-1711.	4.2	73
157	Probing Adsorption Behaviors of BSA onto Chiral Surfaces of Nanoparticles. Small, 2018, 14, e1703982.	5.2	73
158	Therapeutic Nanoparticles Based on Curcumin and Bamboo Charcoal Nanoparticles for Chemo-Photothermal Synergistic Treatment of Cancer and Radioprotection of Normal Cells. ACS Applied Materials & Interfaces, 2017, 9, 14281-14291.	4.0	72
159	Development of a Cancer Vaccine Using In Vivo Clickâ€Chemistryâ€Mediated Active Lymph Node Accumulation for Improved Immunotherapy. Advanced Materials, 2021, 33, e2006007.	11.1	70
160	Design of TPGS-functionalized Cu ₃ BiS ₃ nanocrystals with strong absorption in the second near-infrared window for radiation therapy enhancement. Nanoscale, 2017, 9, 8229-8239.	2.8	69
161	Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today, 2021, 39, 101184.	6.2	67
162	Elemental Bismuth–Graphene Heterostructures for Photocatalysis from Ultraviolet to Infrared Light. ACS Catalysis, 2017, 7, 7043-7050.	5.5	65

#	Article	IF	CITATIONS
163	Ultrasensitive Detection of Circulating Tumor DNA of Lung Cancer via an Enzymatically Amplified SERS-Based Frequency Shift Assay. ACS Applied Materials & Interfaces, 2019, 11, 18145-18152.	4.0	65
164	An Extendable Star-Like Nanoplatform for Functional and Anatomical Imaging-Guided Photothermal Oncotherapy. ACS Nano, 2019, 13, 4379-4391.	7.3	65
165	Tailoring Aggregation Extent of Photosensitizers to Boost Phototherapy Potency for Eliciting Systemic Antitumor Immunity. Advanced Materials, 2022, 34, e2106390.	11.1	65
166	Gd–Metallofullerenol Nanomaterial Suppresses Pancreatic Cancer Metastasis by Inhibiting the Interaction of Histone Deacetylase 1 and Metastasis-Associated Protein 1. ACS Nano, 2015, 9, 6826-6836.	7.3	64
167	BiO _{2–<i>x</i>} Nanosheets as Radiosensitizers with Catalase-Like Activity for Hypoxia Alleviation and Enhancement of the Radiotherapy of Tumors. Inorganic Chemistry, 2020, 59, 3482-3493.	1.9	64
168	Ultrasmall BiOI Quantum Dots with Efficient Renal Clearance for Enhanced Radiotherapy of Cancer. Advanced Science, 2020, 7, 1902561.	5.6	63
169	The Underlying Function and Structural Organization of the Intracellular Protein Corona on Graphdiyne Oxide Nanosheet for Local Immunomodulation. Nano Letters, 2021, 21, 6005-6013.	4.5	63
170	Toxicity of manufactured nanomaterials. Particuology, 2022, 69, 31-48.	2.0	63
171	Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nature Communications, 2021, 12, 6866.	5.8	62
172	Biodistribution, excretion, and toxicity of polyethyleneimine modified NaYF ₄ :Yb,Er upconversion nanoparticles in mice via different administration routes. Nanoscale, 2017, 9, 4497-4507.	2.8	61
173	Ultrasmall Superparamagnetic Iron Oxide Nanoparticle for <i>T</i> ₂ -Weighted Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2017, 9, 28959-28966.	4.0	61
174	Ultrasensitive Detection of Serum MicroRNA Using Branched DNA-Based SERS Platform Combining Simultaneous Detection of α-Fetoprotein for Early Diagnosis of Liver Cancer. ACS Applied Materials & Interfaces, 2018, 10, 34869-34877.	4.0	60
175	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	7.3	60
176	Stability of Ligands on Nanoparticles Regulating the Integrity of Biological Membranes at the Nano–Lipid Interface. ACS Nano, 2019, 13, 8680-8693.	7.3	59
177	Nano-bio interactions: the implication of size-dependent biological effects of nanomaterials. Science China Life Sciences, 2020, 63, 1168-1182.	2.3	58
178	Graphdiyne nanoradioprotector with efficient free radical scavenging ability for mitigating radiation-induced gastrointestinal tract damage. Biomaterials, 2020, 244, 119940.	5.7	58
179	Nucleosome-inspired nanocarrier obtains encapsulation efficiency enhancement and side effects reduction in chemotherapy by using fullerenol assembled with doxorubicin. Biomaterials, 2018, 167, 205-215.	5.7	57
180	Interactions between Th(<scp>iv</scp>) and graphene oxide: experimental and density functional theoretical investigations. RSC Advances, 2014, 4, 3340-3347.	1.7	56

#	Article	IF	CITATIONS
181	Time-Resolved Activation of pH Sensing and Imaging in Vivo by a Remotely Controllable DNA Nanomachine. Nano Letters, 2020, 20, 874-880.	4.5	56
182	Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy. Materials Horizons, 2020, 7, 1834-1844.	6.4	56
183	Gold Nanomaterials in Consumer Cosmetics Nanoproducts: Analyses, Characterization, and Dermal Safety Assessment. Small, 2016, 12, 5488-5496.	5.2	55
184	Quantitative imaging of element spatial distribution in the brain section of a mouse model of Alzheimer's disease using synchrotron radiation X-ray fluorescence analysis. Journal of Analytical Atomic Spectrometry, 2010, 25, 328-333.	1.6	54
185	MoS ₂ -Nanosheet-Assisted Coordination of Metal Ions with Porphyrin for Rapid Detection and Removal of Cadmium Ions in Aqueous Media. ACS Applied Materials & Interfaces, 2017, 9, 21362-21370.	4.0	54
186	Facile Approach To Observe and Quantify the α _{IIb} β ₃ Integrin on a Single-Cell. Analytical Chemistry, 2015, 87, 2546-2549.	3.2	53
187	Early-life exposure to three size-fractionated ultrafine and fine atmospheric particulates in Beijing exacerbates asthma development in mature mice. Particle and Fibre Toxicology, 2018, 15, 13.	2.8	53
188	Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for NIR photo-triggered drug release. Nano Research, 2015, 8, 4038-4047.	5.8	52
189	Application of Multifunctional Nanomaterials in Radioprotection of Healthy Tissues. Advanced Healthcare Materials, 2018, 7, e1800421.	3.9	52
190	The Strong MRI Relaxivity of Paramagnetic Nanoparticles. Journal of Physical Chemistry B, 2008, 112, 6288-6291.	1.2	51
191	Clinically Approved Carbon Nanoparticles with Oral Administration for Intestinal Radioprotection via Protecting the Small Intestinal Crypt Stem Cells and Maintaining the Balance of Intestinal Flora. Small, 2020, 16, e1906915.	5.2	51
192	Controllable Selfâ€Assembly of Peptideâ€Cyanine Conjugates In Vivo as Fineâ€Tunable Theranostics. Angewandte Chemie - International Edition, 2021, 60, 7809-7819.	7.2	51
193	Highly Stable Silica-Coated Bismuth Nanoparticles Deliver Tumor Microenvironment-Responsive Prodrugs to Enhance Tumor-Specific Photoradiotherapy. Journal of the American Chemical Society, 2021, 143, 11449-11461.	6.6	51
194	Air pollution: A culprit of lung cancer. Journal of Hazardous Materials, 2022, 434, 128937.	6.5	51
195	Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2007, 22, 925.	1.6	50
196	A Dualâ€Response DNA Probe for Simultaneously Monitoring Enzymatic Activity and Environmental pH Using a Nanopore. Angewandte Chemie - International Edition, 2019, 58, 14929-14934.	7.2	50
197	Phytotoxicity, Translocation, and Biotransformation of NaYF ₄ Upconversion Nanoparticles in a Soybean Plant. Small, 2015, 11, 4774-4784.	5.2	49
198	Trophic Transfer and Transformation of CeO ₂ Nanoparticles along a Terrestrial Food Chain: Influence of Exposure Routes. Environmental Science & Technology, 2018, 52, 7921-7927.	4.6	49

#	Article	IF	CITATIONS
199	Solvent extraction of U(VI) by trioctylphosphine oxide using a room-temperature ionic liquid. Science China Chemistry, 2014, 57, 1432-1438.	4.2	48
200	Label-Free Au Cluster Used for in Vivo 2D and 3D Computed Tomography of Murine Kidneys. Analytical Chemistry, 2015, 87, 343-345.	3.2	48
201	Translocation, biotransformation-related degradation, and toxicity assessment of polyvinylpyrrolidone-modified 2H-phase nano-MoS ₂ . Nanoscale, 2019, 11, 4767-4780.	2.8	47
202	Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly inhibit the tumor metastasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 945-954.	1.7	46
203	Identification of target organs of copper nanoparticles with ICP-MS technique. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 599-603.	0.7	45
204	Influence of Surface Charge on the Phytotoxicity, Transformation, and Translocation of CeO ₂ Nanoparticles in Cucumber Plants. ACS Applied Materials & Interfaces, 2019, 11, 16905-16913.	4.0	45
205	A photochromic upconversion nanoarchitecture: towards activatable bioimaging and dual NIR light-programmed singlet oxygen generation. Chemical Science, 2019, 10, 10231-10239.	3.7	45
206	A precision structural model for fullerenols. Chemical Science, 2014, 5, 2940-2948.	3.7	43
207	Evaluation of the influence of fullerenol on aging and stress resistance using Caenorhabditis elegans. Biomaterials, 2015, 42, 78-86.	5.7	43
208	Ecotoxicological assessment of lanthanum with Caenorhabditis elegans in liquid medium. Metallomics, 2010, 2, 806.	1.0	42
209	Suppressing the Radiation-Induced Corrosion of Bismuth Nanoparticles for Enhanced Synergistic Cancer Radiophototherapy. ACS Nano, 2020, 14, 13016-13029.	7.3	42
210	Rapid translocation and pharmacokinetics of hydroxylated single-walled carbon nanotubes in mice. Nanotoxicology, 2008, 2, 28-32.	1.6	41
211	Aspect ratios of gold nanoshell capsules mediated melanoma ablation by synergistic photothermal therapy and chemotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 439-448.	1.7	41
212	Ceria Nanoparticles as Enzyme Mimetics. Chinese Journal of Chemistry, 2017, 35, 791-800.	2.6	40
213	Acute Oral Administration of Singleâ€Walled Carbon Nanotubes Increases Intestinal Permeability and Inflammatory Responses: Association with the Changes in Gut Microbiota in Mice. Advanced Healthcare Materials, 2018, 7, e1701313.	3.9	40
214	Strategies for improving drug delivery: nanocarriers and microenvironmental priming. Expert Opinion on Drug Delivery, 2017, 14, 865-877.	2.4	39
215	Highly Selective and Simple Synthesis of C2mâ^'Xâ^'C2nFullerene Dimers. Journal of the American Chemical Society, 2004, 126, 11134-11135.	6.6	38
216	Microstructure evolution of diazonium functionalized graphene: A potential approach to change graphene electronic structure. Journal of Materials Chemistry, 2012, 22, 2063-2068.	6.7	38

#	Article	IF	CITATIONS
217	A facile additive-free method for tunable fabrication of UO2 and U3O8 nanoparticles in aqueous solution. CrystEngComm, 2014, 16, 2645.	1.3	38
218	Frequency Shift Raman-Based Sensing of Serum MicroRNAs for Early Diagnosis and Discrimination of Primary Liver Cancers. Analytical Chemistry, 2018, 90, 10144-10151.	3.2	38
219	A Photosensitizer Discretely Loaded Nanoaggregate with Robust Photodynamic Effect for Local Treatment Triggers Systemic Antitumor Responses. ACS Nano, 2022, 16, 3070-3080.	7.3	38
220	Halogen Bonded Three-Dimensional Uranyl–Organic Compounds with Unprecedented Halogen–Halogen Interactions and Structure Diversity upon Variation of Halogen Substitution. Crystal Growth and Design, 2015, 15, 1395-1406.	1.4	36
221	A Quasi-relativistic Density Functional Theory Study of the Actinyl(VI, V) (An = U, Np, Pu) Complexes with a Six-Membered Macrocycle Containing Pyrrole, Pyridine, and Furan Subunits. Journal of Physical Chemistry A, 2015, 119, 9178-9188.	1.1	35
222	Mesoporous Bamboo Charcoal Nanoparticles as a New Nearâ€Infrared Responsive Drug Carrier for Imagingâ€Guided Chemotherapy/Photothermal Synergistic Therapy of Tumor. Advanced Healthcare Materials, 2016, 5, 1627-1637.	3.9	34
223	Turning On/Off the Anti-Tumor Effect of the Au Cluster via Atomically Controlling Its Molecular Size. ACS Nano, 2018, 12, 4378-4386.	7.3	34
224	Precise design of nanomedicines: perspectives for cancer treatment. National Science Review, 2019, 6, 1107-1110.	4.6	34
225	X-ray-facilitated redox cycling of nanozyme possessing peroxidase-mimicking activity for reactive oxygen species-enhanced cancer therapy. Biomaterials, 2021, 276, 121023.	5.7	34
226	Metallomics, elementomics, and analytical techniques. Pure and Applied Chemistry, 2008, 80, 2577-2594.	0.9	33
227	Harnessing Tumor Microenvironment for Nanoparticleâ€Mediated Radiotherapy. Advanced Therapeutics, 2018, 1, 1800050.	1.6	33
228	Graphdiyne: The Fundamentals and Application of an Emerging Carbon Material. Advanced Materials, 2019, 31, e1904885.	11.1	33
229	Fluorescent supramolecular micelles for imaging-guided cancer therapy. Nanoscale, 2016, 8, 5302-5312.	2.8	32
230	Selenopeptide Nanomedicine Activates Natural Killer Cells for Enhanced Tumor Chemoimmunotherapy. Advanced Materials, 2022, 34, e2108167.	11.1	32
231	Ultrahigh reactivity and grave nanotoxicity of copper nanoparticles. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 595-598.	0.7	30
232	Au Nanoclusters and Photosensitizer Dual Loaded Spatiotemporal Controllable Liposomal Nanocomposites Enhance Tumor Photodynamic Therapy Effect by Inhibiting Thioredoxin Reductase. Advanced Healthcare Materials, 2017, 6, 1601453.	3.9	30
233	Implications of the Human Gut–Brain and Gut–Cancer Axes for Future Nanomedicine. ACS Nano, 2020, 14, 14391-14416.	7.3	30
234	Synchrotron radiation techniques for nanotoxicology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1531-1549.	1.7	29

#	Article	IF	CITATIONS
235	Theoretical studies on the complexation of Eu(III) and Am(III) with HDEHP: structure, bonding nature and stability. Science China Chemistry, 2016, 59, 324-331.	4.2	29
236	The Precise Diagnosis of Cancer Invasion/Metastasis <i>via</i> 2D Laser Ablation Mass Mapping of Metalloproteinase in Primary Cancer Tissue. ACS Nano, 2018, 12, 11139-11151.	7.3	29
237	A Sizeâ€Reducible Nanodrug with an Aggregationâ€Enhanced Photodynamic Effect for Deep Chemoâ€Photodynamic Therapy. Angewandte Chemie, 2018, 130, 11554-11558.	1.6	29
238	Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart cancer therapy. Journal of Materials Chemistry B, 2019, 7, 2588-2607.	2.9	29
239	Generalized Preparation of Two-Dimensional Quasi-nanosheets via Self-assembly of Nanoparticles. Journal of the American Chemical Society, 2019, 141, 1725-1734.	6.6	29
240	Study of rare earth encapsulated carbon nanomolecules for biomedical uses. Journal of Alloys and Compounds, 2006, 408-412, 400-404.	2.8	28
241	Probing the interaction at nano-bio interface using synchrotron radiation-based analytical techniques. Science China Chemistry, 2015, 58, 768-779.	4.2	28
242	Tetranuclear Uranyl Polyrotaxanes: Preferred Selectivity toward Uranyl Tetramer for Stabilizing a Flexible Polyrotaxane Chain Exhibiting Weakened Supramolecular Inclusion. Chemistry - A European Journal, 2015, 21, 10226-10235.	1.7	27
243	Rotation Motion of Designed Nano-Turbine. Scientific Reports, 2014, 4, 5846.	1.6	27
244	Mechanisms of Antioxidant Activities of Fullerenols from First-Principles Calculation. Journal of Physical Chemistry A, 2018, 122, 8183-8190.	1.1	27
245	Quantification of carbon nanomaterials in vivo: direct stable isotope labeling on the skeleton of fullerene C ₆₀ . Environmental Science: Nano, 2014, 1, 64-70.	2.2	26
246	On-demand generation of singlet oxygen from a smart graphene complex for the photodynamic treatment of cancer cells. Biomaterials Science, 2014, 2, 1412-1418.	2.6	26
247	Engineering Multifunctional DNA Hybrid Nanospheres through Coordinationâ€Đriven Selfâ€Assembly. Angewandte Chemie, 2019, 131, 1364-1368.	1.6	26
248	Fractionated regimen-suitable immunoradiotherapy sensitizer based on ultrasmall Fe4Se2W18 nanoclusters enable tumor-specific radiosensitization augment and antitumor immunity boost. Nano Today, 2021, 36, 101003.	6.2	26
249	Rational Design of Nanomaterials for Various Radiationâ€Induced Diseases Prevention and Treatment. Advanced Healthcare Materials, 2021, 10, e2001615.	3.9	26
250	Ytterbium and trace element distribution in brain and organic tissues of offspring rats after prenatal and postnatal exposure to ytterbium. Biological Trace Element Research, 2007, 117, 89-104.	1.9	25
251	Research trends in biomedical applications of two-dimensional nanomaterials over the last decade – A bibliometric analysis. Advanced Drug Delivery Reviews, 2022, 188, 114420.	6.6	25
252	Single-Particle Analysis for Structure and Iron Chemistry of Atmospheric Particulate Matter. Analytical Chemistry, 2020, 92, 975-982.	3.2	24

#	Article	IF	CITATIONS
253	Analysis of mercury-containing protein fractions in brain cytosol of the maternal and infant rats after exposure to a low-dose of methylmercury by SEC coupled to isotope dilution ICP-MS. Journal of Analytical Atomic Spectrometry, 2008, 23, 1112.	1.6	23
254	Comparison of cellular effects of starch-coated SPIONs and poly(lactic-co-glycolic acid) matrix nanoparticles on human monocytes. International Journal of Nanomedicine, 2016, Volume 11, 5221-5236.	3.3	23
255	A highly sensitive SERS-based platform for Zn(<scp>ii</scp>) detection in cellular media. Chemical Communications, 2017, 53, 1797-1800.	2.2	23
256	Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials, 2021, 268, 120552.	5.7	23
257	First principles modeling of zirconium solution in bulk UO2. Journal of Applied Physics, 2013, 113, .	1.1	22
258	Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser. Scientific Reports, 2016, 6, 34008.	1.6	22
259	First-principles DFT+U modeling of defect behaviors in anti-ferromagnetic uranium mononitride. Journal of Applied Physics, 2013, 114, .	1.1	21
260	Solvent extraction of uranium(VI) by aÂdipicolinamide using aÂroom-temperature ionic liquid. Radiochimica Acta, 2014, 102, 87-92.	0.5	21
261	A thiol fluorescent probe reveals the intricate modulation of cysteine's reactivity by Cu(II). Talanta, 2016, 146, 477-482.	2.9	21
262	In Situ Monitoring the Aggregation Dynamics of Amyloid-β Protein Aβ42 in Physiological Media via a Raman-Based Frequency Shift Method. ACS Applied Bio Materials, 2018, 1, 814-824.	2.3	21
263	Organelleâ€Specific Photoactivation of DNA Nanosensors for Precise Profiling of Subcellular Enzymatic Activity. Angewandte Chemie, 2021, 133, 9005-9013.	1.6	20
264	3D Imaging and Quantification of the Integrin at a Single-Cell Base on a Multisignal Nanoprobe and Synchrotron Radiation Soft X-ray Tomography Microscopy. Analytical Chemistry, 2021, 93, 1237-1241.	3.2	20
265	Quantification of proteins using lanthanide labeling and HPLC/ICP-MS detection. Journal of Analytical Atomic Spectrometry, 2011, 26, 1233.	1.6	19
266	Regioselective alkyl transfer from phosphonium ylides to functionalized polyfluoroarenes. Chemical Science, 2014, 5, 1934-1939.	3.7	19
267	SERS-based sensing technique for trace melamine detection – A new method exploring. Talanta, 2016, 153, 186-190.	2.9	19
268	One-Step Synthesis of Single-Stranded DNA-Bridged Iron Oxide Supraparticles as MRI Contrast Agents. Nano Letters, 2021, 21, 2793-2799.	4.5	19
269	Spatially Selective Monitoring of Subcellular Enzyme Dynamics in Response to Mitochondriaâ€Targeted Photodynamic Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
270	In situ observation of C60(C(COOH)2)2 interacting with living cells using fluorescence microscopy. Science Bulletin, 2006, 51, 1060-1064.	1.7	18

#	Article	IF	CITATIONS
271	Quantifying the biodistribution of nanoparticles. Nature Nanotechnology, 2011, 6, 755-755.	15.6	18
272	Selective separation of Am(III) from Eu(III) by 2,9-Bis(dialkyl-1,2,4-triazin-3-yl)-1,10-phenanthrolines: a relativistic quantum chemistry study. Radiochimica Acta, 2014, 102, 875-886.	0.5	18
273	Coculture with Lowâ€Dose SWCNT Attenuates Bacterial Invasion and Inflammation in Human Enterocyteâ€like Cacoâ€2 Cells. Small, 2015, 11, 4366-4378.	5.2	18
274	Quantifying the distribution of ceria nanoparticles in cucumber roots: the influence of labeling. RSC Advances, 2015, 5, 4554-4560.	1.7	18
275	A smart DNA nanodevice for ATP-activatable bioimaging and photodynamic therapy. Science China Chemistry, 2020, 63, 1490-1497.	4.2	18
276	Applications of radiotracer techniques for the pharmacology and toxicology studies of nanomaterials. Science Bulletin, 2009, 54, 173-182.	4.3	17
277	A density functional theory study of complex species and reactions of Am(III)/Eu(III) with nitrate anions. Molecular Simulation, 2014, 40, 379-386.	0.9	17
278	A bibliometric analysis: Research progress and prospects on transition metal dichalcogenides in the biomedical field. Chinese Chemical Letters, 2021, 32, 3762-3770.	4.8	17
279	Two novel uranyl complexes of a semi-rigid aromatic tetracarboxylic acid supported by an organic base as an auxiliary ligand or a templating agent: an experimental and theoretical exploration. CrystEngComm, 2015, 17, 3031-3040.	1.3	16
280	Fullerenol inhibits the cross-talk between bone marrow-derived mesenchymal stem cells and tumor cells by regulating MAPK signaling. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1879-1890.	1.7	16
281	The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. Nanoscale, 2019, 11, 14528-14539.	2.8	16
282	Nano as a Rosetta Stone: The Global Roles and Opportunities for Nanoscience and Nanotechnology. ACS Nano, 2019, 13, 10853-10855.	7.3	16
283	Selfâ€Assembly of Copper–DNAzyme Nanohybrids for Dualâ€Catalytic Tumor Therapy. Angewandte Chemie, 2021, 133, 14445-14449.	1.6	16
284	Combinational application of metal–organic frameworksâ€based nanozyme and nucleic acid delivery in cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1773.	3.3	16
285	Controllable synthesis of Gd2O(CO3)2·H2O@silica–FITC nanoparticles with size-dependent optical and magnetic resonance imaging properties. New Journal of Chemistry, 2012, 36, 2599.	1.4	15
286	Enhanced Multifunctional Properties of Graphene Nanocomposites with Nacre‣ike Structures. Advanced Engineering Materials, 2015, 17, 523-531.	1.6	15
287	Protein-directed synthesis of Bi ₂ S ₃ nanoparticles as an efficient contrast agent for visualizing the gastrointestinal tract. RSC Advances, 2017, 7, 17505-17513.	1.7	15
288	<i>Bacillus subtilis</i> causes dissolution of ceria nanoparticles at the nano–bio interface. Environmental Science: Nano, 2019, 6, 216-223.	2.2	15

#	Article	IF	CITATIONS
289	Reducing Postoperative Recurrence of Early‣tage Hepatocellular Carcinoma by a Woundâ€Targeted Nanodrug. Advanced Science, 2022, 9, e2200477.	5.6	15
290	Upconversion Luminescenceâ€Boosted Escape of DNAzyme from Endosomes for Enhanced Geneâ€Silencing Efficacy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
291	Growth of Uranyl Hydroxide Nanowires and Nanotubes by the Electrodeposition Method and Their Transformation to One-Dimensional U3O8Nanostructures. European Journal of Inorganic Chemistry, 2014, 2014, 1158-1164.	1.0	14
292	The isotopic effects of ¹³ C-labeled large carbon cage (C ₇₀) fullerenes and their formation process. RSC Advances, 2015, 5, 76949-76956.	1.7	14
293	High-Throughput Screening of Substrate Specificity for Protein Tyrosine Phosphatases (PTPs) on Phosphopeptide Microarrays. Methods in Molecular Biology, 2016, 1368, 181-196.	0.4	14
294	Design criteria for tetradentate phenanthroline-derived heterocyclic ligands to separate Am(III) from Eu(III). Science China Chemistry, 2014, 57, 1439-1448.	4.2	13
295	Simultaneous Quantification of Multiple Cancer Biomarkers in Blood Samples through DNAâ€Assisted Nanopore Sensing. Angewandte Chemie, 2018, 130, 12058-12063.	1.6	13
296	Mild Acidosisâ€Directed Signal Amplification in Tumor Microenvironment via Spatioselective Recruitment of DNA Amplifiers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
297	Regulation on mechanical properties of collagen: Enhanced bioactivities of metallofullerol. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 783-793.	1.7	12
298	Specific detection and effective inhibition of a single bacterial species in situ using peptide mineralized Au cluster probes. Science China Chemistry, 2018, 61, 627-634.	4.2	12
299	Gd@C82(OH)22 harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling pathway. Journal of Materials Chemistry B, 2018, 6, 5802-5811.	2.9	12
300	New Insights from Chemical Biology: Molecular Basis of Transmission, Diagnosis, and Therapy of SARS-CoV-2. CCS Chemistry, 2021, 3, 1501-1528.	4.6	12
301	Visual detection of Cu(<scp>ii</scp>) ions based on a simple pyrene derivative using click chemistry. Analytical Methods, 2014, 6, 4977-4981.	1.3	11
302	Multivalent Engineering of Exosomes with Activatable Aptamer Probes for Specific Regulation and Monitoring of Cell Targeting. Analytical Chemistry, 2022, 94, 3840-3848.	3.2	11
303	Precision design of engineered nanomaterials to guide immune systems for disease treatment. Matter, 2022, 5, 1162-1191.	5.0	11
304	Screen efficiency comparisons of decision tree and neural network algorithms in machine learning assisted drug design. Science China Chemistry, 2019, 62, 506-514.	4.2	10
305	Nd ³⁺ ensitized Upconversion Metal–Organic Frameworks for Mitochondriaâ€Targeted Amplified Photodynamic Therapy. Angewandte Chemie, 2020, 132, 2656-2660.	1.6	10
306	Controllable Selfâ€Assembly of Peptideâ€Cyanine Conjugates In Vivo as Fineâ€Tunable Theranostics. Angewandte Chemie, 2021, 133, 7888-7898.	1.6	10

#	Article	IF	CITATIONS
307	5p Electronic properties of Gd in Gd@C82(OH)x studied by synchrotron radiation XPS. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 307-310.	0.7	9
308	Study of multihydroxylated processes of Gd@C82 by ICP-MASS. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 537-540.	0.7	9
309	Nuclear and radiochemistry in China: present status and future perspectives. Radiochimica Acta, 2012, 100, 529-539.	0.5	9
310	Extraction complexes of Pu(IV) with carbamoylmethylphosphine oxide ligands: AÂrelativistic density functional study. Radiochimica Acta, 2014, 102, 77-86.	0.5	9
311	Cellular Responses to Exposure to Outdoor Air from the Chinese Spring Festival at the Air–Liquid Interface. Environmental Science & Technology, 2019, 53, 9128-9138.	4.6	9
312	The Growth of Complex Nanostructures: Synergism of Dipolar Force and Stackingâ€Defects in Anisotropic Selfâ€Assembly. Advanced Materials, 2008, 20, 1794-1798.	11.1	8
313	Two new uranyl fluoride complexes with UVIî€O–alkali (Na, Cs) interactions: Experimental and theoretical studies. CrystEngComm, 2013, 15, 8041.	1.3	8
314	Upconversion: Redâ€Emitting Upconverting Nanoparticles for Photodynamic Therapy in Cancer Cells Under Nearâ€Infrared Excitation (Small 11/2013). Small, 2013, 9, 1928-1928.	5.2	8
315	Metallofullerenol Inhibits Cellular Iron Uptake by Inducing Transferrin Tetramerization. Chemistry - an Asian Journal, 2017, 12, 2646-2651.	1.7	8
316	A Dualâ€Response DNA Probe for Simultaneously Monitoring Enzymatic Activity and Environmental pH Using a Nanopore. Angewandte Chemie, 2019, 131, 15071-15076.	1.6	8
317	A pyruvate decarboxylase-mediated therapeutic strategy for mimicking yeast metabolism in cancer cells. Pharmacological Research, 2016, 111, 413-421.	3.1	7
318	Elemental analysis and imaging of sunscreen fingermarks by X-ray fluorescence. Analytical and Bioanalytical Chemistry, 2019, 411, 4151-4157.	1.9	7
319	Radiolabeled peptide probe for tumor imaging. Chinese Chemical Letters, 2022, 33, 3361-3370.	4.8	7
320	Synthesis of new carbon nanomolecule: C141. Science Bulletin, 2004, 49, 793-796.	1.7	5
321	Comparative study of core- and surface-radiolabeling strategies for the assembly of iron oxide nanoparticle-based theranostic nanocomposites. Nanoscale, 2019, 11, 5909-5913.	2.8	5
322	Oncolytic peptide nanomachine circumvents chemo resistance of renal cell carcinoma. Biomaterials, 2022, 284, 121488.	5.7	5
323	Ultrafast Growth of Large Area Graphene on Si Wafer by a Single Pulse Current. Molecules, 2021, 26, 4940.	1.7	4
324	Neutron-irradiation catalyzed synthesis of novel carbon nanomaterials. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 611-614.	0.7	3

#	Article	IF	CITATIONS
325	Synthesis of ordered mesoporous U ₃ O ₈ by a nanocasting route. Radiochimica Acta, 2014, 102, 813-816.	0.5	3
326	Investigating the stability of gold nanorods modified with thiol molecules for biosensing. RSC Advances, 2016, 6, 174-178.	1.7	3
327	Study on orally delivered paclitaxel nanocrystals: modification, characterization and activity in the gastrointestinal tract. Royal Society Open Science, 2017, 4, 170753.	1.1	3
328	One Second Formation of Large Area Graphene on a Conical Tip Surface via Direct Transformation of Surface Carbide. Small, 2018, 14, e1801288.	5.2	3
329	Clinical Nanomaterials: A Safeâ€byâ€Design Strategy towards Safer Nanomaterials in Nanomedicines (Adv.) Tj ET	Qq110.7	'84314 rgBT
330	Ultrafast Growth of Highly Conductive Graphene Films by a Single Subsecond Pulse of Microwave. ACS Nano, 2022, 16, 6676-6686.	7.3	3
331	Uptake and elimination of lanthanum by excised roots of Triticum aestivum L Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 523-525.	0.7	2
332	Graphene: Unraveling Stress-Induced Toxicity Properties of Graphene Oxide and the Underlying Mechanism (Adv. Mater. 39/2012). Advanced Materials, 2012, 24, 5390-5390.	11.1	2
333	Luminescent Nanoparticles: Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenching‧hield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd ³⁺ ‧ensitized Nanoparticles (Adv. Mater. 18/2014). Advanced Materials, 2014, 26, 2766-2766.	11.1	2
334	Assembling single gold nanorods into large-scale highly aligned nanoarrays via vacuum-enhanced capillarity. Nanoscale Research Letters, 2014, 9, 556.	3.1	2
335	Metallofullerenols: Polyhydroxylated Metallofullerenols Stimulate IL-1β Secretion of Macrophage through TLRs/MyD88/NF-κB Pathway and NLRP3Inflammasome Activation (Small 12/2014). Small, 2014, 10, 2310-2310.	5.2	2
336	Exploring the Interaction of Fullerenol with Key Digestive Proteases Using Raman-Based Frequency-Shift Sensing and Molecular Simulation Analysis. ACS Applied Bio Materials, 2019, 2, 2946-2954.	2.3	2
337	Boron and Nitrogen Co-Doping of Graphynes without Inducing Empty or Doubly Filled States in ï€-Conjugated Systems. Journal of Physical Chemistry C, 2019, 123, 625-630.	1.5	2
338	Merging DNA Probes with Nanotechnology for RNA Imaging In vivo. Current Analytical Chemistry, 2022, 18, 622-629.	0.6	2
339	Spatially Selective Monitoring of Subcellular Enzyme Dynamics in Response to Mitochondria‶argeted Photodynamic Therapy. Angewandte Chemie, 0, , .	1.6	2
340	Upconversion Luminescenceâ€Boosted Escape of DNAzyme from Endosomes for Enhanced Geneâ€Silencing Efficacy. Angewandte Chemie, 2022, 134, .	1.6	2
341	Photothermal Therapy: Multifunctional WS2 @Polyetherimide Nanoplatforms for Imaging Guided Gene-Photothermal Synergistic Therapy of Cancer (Adv. Healthcare Mater. 21/2016). Advanced Healthcare Materials, 2016, 5, 2834-2834.	3.9	1
342	Frontispiece: Simultaneous Quantification of Multiple Cancer Biomarkers in Blood Samples through DNA-Assisted Nanopore Sensing. Angewandte Chemie - International Edition, 2018, 57, .	7.2	1

#	Article	IF	CITATIONS
343	Tumor-discriminating Nanoceria Antioxidant Enables Protection Against Acute Kidney Injury Without Compromising Chemotherapeutic Effects. Chemical Research in Chinese Universities, 2021, 37, 621-622.	1.3	1
344	Second near-infrared window persistent luminescence nanomaterials for in vivo bioimaging. Science China Chemistry, 2021, 64, 1439-1440.	4.2	1
345	XAFS study on interactions of metallothionein, mercuric chloride and/or sodium selenite. Diqiu Huaxue, 2006, 25, 124-124.	0.5	0
346	Gold Nanorods: Watching Single Gold Nanorods Grow (Small 9/2012). Small, 2012, 8, 1290-1290.	5.2	0
347	Photodynamic Therapy: Au Nanoclusters and Photosensitizer Dual Loaded Spatiotemporal Controllable Liposomal Nanocomposites Enhance Tumor Photodynamic Therapy Effect by Inhibiting Thioredoxin Reductase (Adv. Healthcare Mater. 7/2017). Advanced Healthcare Materials, 2017, 6, .	3.9	0
348	Solidifying framework nucleic acids. Science China Chemistry, 2018, 61, 1481-1482.	4.2	0
349	Frontispiz: Simultaneous Quantification of Multiple Cancer Biomarkers in Blood Samples through DNA-Assisted Nanopore Sensing. Angewandte Chemie, 2018, 130, .	1.6	0
350	Gut Microbiota: Acute Oral Administration of Singleâ€Walled Carbon Nanotubes Increases Intestinal Permeability and Inflammatory Responses: Association with the Changes in Gut Microbiota in Mice (Adv. Healthcare Mater. 13/2018). Advanced Healthcare Materials, 2018, 7, 1870053.	3.9	0
351	Innenrücktitelbild: Spatially Selective Monitoring of Subcellular Enzyme Dynamics in Response to Mitochondriaâ€Targeted Photodynamic Therapy (Angew. Chem. 28/2022). Angewandte Chemie, 2022, 134, .	1.6	0
352	Mild Acidosisâ€Directed Signal Amplification in Tumor Microenvironment via Spatioselective Recruitment of DNA Amplifiers. Angewandte Chemie, 0, , .	1.6	0