David P Cistola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6982555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule. Biochemistry, 1988, 27, 1881-1888.	1.2	421
2	Ligand Binding Alters the Backbone Mobility of Intestinal Fatty Acid-Binding Protein as Monitored by15N NMR Relaxation and1H Exchangeâ€. Biochemistry, 1997, 36, 2278-2290.	1.2	209
3	Phase behavior and bilayer properties of fatty acids: hydrated 1:1 acid-soaps. Biochemistry, 1986, 25, 2804-2812.	1.2	195
4	Discrete Backbone Disorder in the Nuclear Magnetic Resonance Structure of Apo Intestinal Fatty Acid-Binding Protein:  Implications for the Mechanism of Ligand Entry,. Biochemistry, 1997, 36, 1450-1460.	1.2	170
5	The NMR Solution Structure of Intestinal Fatty Acid-binding Protein Complexed with Palmitate: Application of a Novel Distance Geometry Algorithm. Journal of Molecular Biology, 1996, 264, 585-602.	2.0	159
6	Association Between Obesity and Cardiovascular Outcomes: Updated Evidence from Meta-analysis Studies. Current Cardiology Reports, 2020, 22, 25.	1.3	142
7	Human Phagocytes Employ the Myeloperoxidase-Hydrogen Peroxide System to Synthesize Dityrosine, Trityrosine, Pulcherosine, and Isodityrosine by a Tyrosyl Radical-dependent Pathway. Journal of Biological Chemistry, 1996, 271, 19950-19956.	1.6	126
8	The helical domain of intestinal fatty acid binding protein is critical for collisional transfer of fatty acids to phospholipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12174-12178.	3.3	126
9	Transfer of oleic acid between albumin and phospholipid vesicles Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 82-86.	3.3	125
10	Ligand-protein electrostatic interactions govern the specificity of retinol- and fatty acid-binding proteins. Biochemistry, 1993, 32, 872-878.	1.2	107
11	Cytoplasmic fatty acid binding protein: Significance for intracellular transport of fatty acids and putative role on signal transduction pathways. Prostaglandins Leukotrienes and Essential Fatty Acids, 1993, 48, 33-41.	1.0	107
12	Fatty Acid Interactions with a Helix-less Variant of Intestinal Fatty Acid-Binding Proteinâ€. Biochemistry, 1996, 35, 7559-7565.	1.2	97
13	Interactions of oleic acid with liver fatty acid binding protein: a carbon-13 NMR study. Biochemistry, 1988, 27, 711-717.	1.2	92
14	The Ionization Behavior of Fatty Acids and Bile Acids in Micelles and Membranes. Hepatology, 1984, 4, 77S-79S.	3.6	90
15	Energetics by NMR: Site-specific binding in a positively cooperative system. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1847-1852.	3.3	86
16	Fatty acid distribution in systems modeling the normal and diabetic human circulation. A 13C nuclear magnetic resonance study Journal of Clinical Investigation, 1991, 87, 1431-1441.	3.9	86
17	Interactions of myristic acid with bovine serum albumin: a 13C NMR study Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 3718-3722.	3.3	84
18	Titration calorimetry as a binding assay for lipid-binding proteins. Molecular and Cellular Biochemistry, 1993, 123, 29-37.	1.4	75

#	Article	IF	CITATIONS
19	Intestinal Fatty Acid-Binding Protein: The Structure and Stability of a Helix-less Variantâ€. Biochemistry, 1996, 35, 7553-7558.	1.2	62
20	Fatty acid binding proteins reduce 15-lipoxygenase-induced oxygenation of linoleic acid and arachidonic acid. Lipids and Lipid Metabolism, 1997, 1346, 75-85.	2.6	60
21	Determinants of Cooperativity and Site Selectivity in Human Ileal Bile Acid Binding Protein. Biochemistry, 2006, 45, 727-737.	1.2	51
22	A Single Hydroxyl Group Governs Ligand Site Selectivity in Human Ileal Bile Acid Binding Protein. Journal of the American Chemical Society, 2004, 126, 11024-11029.	6.6	50
23	The structure and dynamics of rat apo-cellular retinol-binding protein II in solution: comparison with the X-ray structure 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 286, 1179-1195.	2.0	46
24	Binding of retinol induces changes in rat cellular retinol-binding protein II conformation and backbone dynamics. Journal of Molecular Biology, 2000, 300, 619-632.	2.0	44
25	Relative Strength of Cation-ï€ vs Salt-Bridge Interactions: The Gtα(340â^350) Peptide/Rhodopsin System. Journal of the American Chemical Society, 2006, 128, 7531-7541.	6.6	42
26	Compact NMR relaxometry of human blood and blood components. TrAC - Trends in Analytical Chemistry, 2016, 83, 53-64.	5.8	42
27	Deletion of the Helical Motif in the Intestinal Fatty Acid-Binding Protein Reduces Its Interactions with Membrane Monolayers:  Brewster Angle Microscopy, IR Reflection-Absorption Spectroscopy, and Surface Pressure Studies. Biochemistry, 2001, 40, 1976-1983.	1.2	41
28	Steroid Ring Hydroxylation Patterns Govern Cooperativity in Human Bile Acid Binding Proteinâ€. Biochemistry, 2003, 42, 11561-11567.	1.2	41
29	Analysis of Ligand Binding and Protein Dynamics of Human Retinoid X Receptor Alpha Ligand-Binding Domain by Nuclear Magnetic Resonanceâ€. Biochemistry, 2006, 45, 1629-1639.	1.2	38
30	Non-Invasive Glucose Monitoring Using Optical Sensor and Machine Learning Techniques for Diabetes Applications. IEEE Access, 2021, 9, 73029-73045.	2.6	36
31	High-resolution NMR in inhomogeneous fields. Chemical Physics Letters, 1997, 277, 367-374.	1.2	31
32	Two Homologous Rat Cellular Retinol-binding Proteins Differ in Local Conformational Flexibility. Journal of Molecular Biology, 2003, 330, 799-812.	2.0	31
33	The threeâ€dimensional structure of a helixâ€less variant of intestinal fatty acidâ€binding protein. Protein Science, 1998, 7, 1332-1339.	3.1	30
34	Localization of Tolbutamide Binding Sites on Human Serum Albumin Using Titration Calorimetry and Heteronuclear 2-D NMR. Biochemistry, 1995, 34, 8780-8787.	1.2	29
35	Intestinal fatty acid binding protein: folding of fluorescein-modified proteins. Biochemistry, 1995, 34, 2724-2730.	1.2	28
36	NMR structure of a fungal virulence factor reveals structural homology with mammalian saposin B. Molecular Microbiology, 2009, 72, 344-353.	1.2	28

#	Article	IF	CITATIONS
37	A comparative study of the conformational properties of Escherichia coli-derived rat intestinal and liver fatty acid binding proteins. BBA - Proteins and Proteomics, 1993, 1162, 291-296.	2.1	26
38	An embryo-associated fatty acid-binding protein in the filarial nematode Brugia malayi. Molecular and Biochemical Parasitology, 2002, 124, 1-10.	0.5	22
39	Water T2 as an early, global and practical biomarker for metabolic syndrome: an observational cross-sectional study. Journal of Translational Medicine, 2017, 15, 258.	1.8	22
40	13C NMR studies of fatty acid-protein interactions: comparison of homologous fatty acid-binding proteins produced in the intestinal epithelium. Molecular and Cellular Biochemistry, 1990, 98, 101-10.	1.4	21
41	Intracellular fatty-acid-binding proteins and their genes: useful models for diverse biological questions. Current Opinion in Lipidology, 1991, 2, 125-137.	1.2	21
42	Kinetic Mechanism of Ligand Binding in Human Ileal Bile Acid Binding Protein as Determined by Stopped-Flow Fluorescence Analysis. Biochemistry, 2007, 46, 5427-5436.	1.2	21
43	Novel functions of CCM1 delimit the relationship of PTB/PH domains. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1274-1286.	1.1	21
44	1H, 13C and 15N assignments and chemical shift-derived secondary structure of intestinal fatty acid-binding protein. Journal of Biomolecular NMR, 1995, 6, 198-210.	1.6	20
45	Synthesis of [3,4-13C2]-Enriched Bile Salts as NMR Probes of Proteinâ^'Ligand Interactions. Journal of Organic Chemistry, 2002, 67, 6764-6771.	1.7	20
46	Nanofluidity of Fatty Acid Hydrocarbon Chains As Monitored by Benchtop Time-Domain Nuclear Magnetic Resonance. Biochemistry, 2014, 53, 7515-7522.	1.2	20
47	Probing internal water molecules in proteins using two-dimensional 19F-1H NMR. Journal of Biomolecular NMR, 1995, 5, 415-9.	1.6	19
48	Measurement of methyl 13C-1H cross-correlation in uniformly 13C-, 15N-, labeled proteins. Journal of Biomolecular NMR, 2003, 27, 351-364.	1.6	18
49	Structural Features Responsible for the Biological Stability of Histoplasma's Virulence Factor CBP. Biochemistry, 2008, 47, 4427-4438.	1.2	16
50	Structural determinants of ligand binding in the ternary complex of human ileal bile acid binding protein with glycocholate and glycochenodeoxycholate obtained from solution <scp>NMR</scp> . FEBS Journal, 2016, 283, 541-555.	2.2	16
51	Micelle formation and phase separation. Journal of the American Chemical Society, 1990, 112, 3214-3215.	6.6	15
52	Fat sites found!. Nature Structural Biology, 1998, 5, 751-753.	9.7	14
53	Titration calorimetry as a binding assay for lipid-binding proteins. , 1993, , 29-37.		13
54	Aptamer-based search for correlates of plasma and serum water T2: implications for early metabolic dysregulation and metabolic syndrome. Biomarker Research, 2018, 6, 28.	2.8	12

#	Article	IF	CITATIONS
55	A Simple Efficient Synthesis of [23,24]-13C2-Labeled Bile Salts as NMR Probes of Protein–Ligand Interactions. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 433-435.	1.0	11
56	The NMR structure of a stable and compact all-β-sheet variant of intestinal fatty acid-binding protein. Protein Science, 2004, 13, 1227-1237.	3.1	11
57	Alternate Binding Mode of C-terminal Phenethylamine Analogs of Gt?(340?350) to Photoactivated Rhodopsin. Chemical Biology and Drug Design, 2006, 68, 295-307.	1.5	9
58	The RXRα C-terminus T462 is a NMR sensor for coactivator peptide binding. Biochemical and Biophysical Research Communications, 2008, 366, 932-937.	1.0	6
59	Early detection of metabolic dysregulation using water T ₂ analysis of biobanked samples. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2018, Volume 11, 807-818.	1.1	6
60	Interactions of oleic acid with liver fatty acid binding protein: a carbon-13 NMR study [Erratum to document cited in CA108(7):51580v]. Biochemistry, 1989, 28, 3628-3628.	1.2	3
61	Dynamics Light Scattering as a Tool for Assessing Health Status and Disease Risk. Biophysical Journal, 2016, 110, 476a.	0.2	3
62	A Faster Migrating Variant Masquerades as NICD When Performing in Vitro γ-Secretase Assays with Bacterially Expressed Notch Substratesâ€. Biochemistry, 2006, 45, 5351-5358.	1.2	2
63	1000-P: Plasma Water T2 Monitors Cardiometabolic Health and Improves with Lifestyle Modification. Diabetes, 2021, 70, .	0.3	1
64	Compensatory Hyperinsulinemia is a Hidden Risk Factor for Type 2 Diabetes: CARDIA 30-year Follow Up. Metabolism: Clinical and Experimental, 2022, 128, 155061.	1.5	1
65	Compensatory Hyperinsulinemia in Young Adults and the Risk of Future Diabetes: CARDIA 25-year Follow Up. Metabolism: Clinical and Experimental, 2020, 104, 154131.	1.5	0
66	Correlates and Risk Factors for Compensatory Hyperinsulinemia in U.S. Populations. Metabolism: Clinical and Experimental, 2020, 104, 154132.	1.5	0
67	13C NMR studies of fatty acid-protein interactions: comparison of homologous fatty acid-binding proteins produced in the intestinal epithelium. , 1990, , 101-110.		Ο
68	STOPPED-FLOW CIRCULAR DICHROISM AND 19F NMR AS PROBES FOR THE FOLDING OF RAT INTESTINAL FATTY-ACID BINDING PROTEIN (IFABP)11Supported by NIH research grants DK13332 to C.F. and DK30292 to J.I.G., 1992, 437-443.		0
69	Abstract P041: New Biomarkers for Detecting and Subtyping Insulin Resistance. Circulation, 2017, 135, .	1.6	0
70	Metabolic Syndrome and Prediabetes Fail to Detect a High Prevalence of Early Insulin Resistance—The PREMIER Study. Diabetes, 2018, 67, 1534-P.	0.3	0
71	Abstract P048: Early Cardiometabolic Risk: The Prevalence of Compensatory Hyperinsulinemia in U.S. Populations. Circulation, 2019, 139, .	1.6	0
72	1444-P: Discordance between Insulin and C-Peptide Is Associated with Liver Function and Ethnicity. Diabetes, 2020, 69, .	0.3	0

#	Article	IF	CITATIONS
73	1445-P: Metabolic Syndrome Subtypes Point to Distinct Origins of Glucose Intolerance. Diabetes, 2020, 69, 1445-P.	0.3	Ο
74	Abstract P437: Early Insulin Resistance Responds To Lifestyle Interventions: The Premier Study. Circulation, 2020, 141, .	1.6	0
75	Overweight is Not a Diabetes Risk Factor for Insulin-sensitive Individuals: CARDIA 30-year Follow Up. Metabolism: Clinical and Experimental, 2022, 128, 155095.	1.5	0
76	Abstract EP06: Serum Water T ₂ And Its Association With Cardiometabolic Health: The Premier Study. Circulation, 2022, 145, .	1.6	0
77	Abstract P018: Overweight Is Not A Cardiovascular Risk Factor For Insulin-sensitive Individuals: CARDIA 30-year Follow Up. Circulation, 2022, 145, .	1.6	0
78	Abstract EP05: Plasma Water T ₂ Is A Global Marker Of Cardiometabolic Health: The Premier Study. Circulation, 2022, 145, .	1.6	0
79	Abstract P019: Compensatory Hyperinsulinemia Is An Independent Risk Factor For Atherosclerotic Cardiovascular Disease: CARDIA 30-year Follow Up. Circulation, 2022, 145, .	1.6	0
80	High Prevalence of Compensatory Hyperinsulinemia in U.S. Teenagers: The 2015-2018 National Health and Nutrition Examination Survey (NHANES). Metabolism: Clinical and Experimental, 2022, 128, 155088.	1.5	0
81	Abstract 620: Water as a Universal Biosensor for Inflammation, Insulin Resistance and Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0