Xianzhi Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6982191/publications.pdf

Version: 2024-02-01

71532 109137 6,319 117 35 76 h-index citations g-index papers 121 121 121 2559 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 2018, 186, 262-286.	4.0	576
2	SHRIMP U–Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research, 2007, 158, 1-16.	1,2	435
3	Tectonics of South China continent and its implications. Science China Earth Sciences, 2013, 56, 1804-1828.	2.3	423
4	Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 2018, 186, 37-75.	4.0	371
5	Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth-Science Reviews, 2019, 192, 91-137.	4.0	279
6	Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 2012, 200-203, 59-73.	1,2	245
7	Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: Insights from the Mianlue suture. Gondwana Research, 2007, 12, 121-143.	3.0	238
8	Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. Earth and Planetary Science Letters, 2017, 464, 166-174.	1.8	214
9	Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data. Earth-Science Reviews, 2017, 166, 270-285.	4.0	208
10	Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton. Journal of Asian Earth Sciences, 2012, 47, 64-79.	1.0	199
11	Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton. Journal of Asian Earth Sciences, 2012, 47, 80-93.	1.0	154
12	Intracontinental deformation in a frontier of super-convergence: A perspective on the tectonic milieu of the South China Block. Journal of Asian Earth Sciences, 2012, 49, 313-329.	1.0	133
13	SHRIMP U–Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong'an Block), China, and its tectonic implications. Tectonophysics, 2004, 394, 171-192.	0.9	123
14	Thermochronological constraints on two-stage extrusion of HP/UHP terranes in the Dabie–Sulu orogen, east-central China. Tectonophysics, 2011, 504, 25-42.	0.9	115
15	Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China. Earth-Science Reviews, 2019, 191, 190-211.	4.0	112
16	UPb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China. Tectonophysics, 2013, 599, 67-88.	0.9	104
17	Two-stage Triassic exhumation of HP–UHP terranes in the western Dabie orogen of China: Constraints from structural geology. Tectonophysics, 2010, 490, 267-293.	0.9	102
18	Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China. Earth-Science Reviews, 2019, 196, 102884.	4.0	93

#	Article	IF	CITATIONS
19	Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin. Journal of Asian Earth Sciences, 2014, 88, 28-40.	1.0	80
20	Two-stage collision-related extrusion of the western Dabie HP–UHP metamorphic terranes, central China: Evidence from quartz c-axis fabrics and structures. Gondwana Research, 2009, 16, 294-309.	3.0	74
21	Microplate tectonics: new insights from micro-blocks in the global oceans, continental margins and deep mantle. Earth-Science Reviews, 2018, 185, 1029-1064.	4.0	67
22	Seismic attenuation tomography of the Northeast Japan arc: Insight into the 2011 Tohoku earthquake (<i>M_w</i> 9.0) and subduction dynamics. Journal of Geophysical Research: Solid Earth, 2014, 119, 1094-1118.	1.4	66
23	Detrital zircon geochronology of Neoproterozoic to early Paleozoic sedimentary rocks in the North Qinling Orogenic Belt: Implications for the tectonic evolution of the Kuanping Ocean. Precambrian Research, 2016, 279, 1-16.	1.2	66
24	Lithospheric architecture and deformation of NE Tibet: New insights on the interplay of regional tectonic processes. Earth and Planetary Science Letters, 2016, 449, 89-95.	1.8	65
25	The northern boundary of the Proto-Tethys Ocean: Constraints from structural analysis and U–Pb zircon geochronology of the North Qinling Terrane. Journal of Asian Earth Sciences, 2015, 113, 560-574.	1.0	64
26	Source and accumulation of gas hydrate in the northern margin of the South China Sea. Marine and Petroleum Geology, 2016, 69, 127-145.	1.5	61
27	Structural anatomy and dynamics of evolution of the Qikou Sag, Bohai Bay Basin: Implications for the destruction of North China craton. Journal of Asian Earth Sciences, 2012, 47, 94-106.	1.0	52
28	Crustal structure of the southern Dabie ultrahigh-pressure orogen and Yangtze foreland from deep seismic reflection profiling. Terra Nova, 2004, 16, 319-324.	0.9	51
29	Coupling and transition of Meso–Cenozoic intracontinental deformation between the Taihang and Qinling Mountains. Journal of Asian Earth Sciences, 2015, 114, 188-202.	1.0	50
30	Long history of a Grenville orogen relic – The North Qinling terrane: Evolution of the Qinling orogenic belt from Rodinia to Gondwana. Precambrian Research, 2015, 271, 98-117.	1.2	47
31	East Asian lithospheric evolution dictated by multistage Mesozoic flat-slab subduction. Earth-Science Reviews, 2021, 217, 103621.	4.0	43
32	Evolution of the Asian continent and its continental margins. Journal of Asian Earth Sciences, 2012, 47, 1-4.	1.0	42
33	Origin of the North Qinling Microcontinent and Proterozoic geotectonic evolution of the Kuanping Ocean, Central China. Precambrian Research, 2015, 266, 179-193.	1.2	41
34	Slab Rollback Versus Delamination: Contrasting Fates of Flatâ€Slab Subduction and Implications for South China Evolution in the Mesozoic. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019164.	1.4	40
35	Dynamic processes of the curved subduction system in Southeast Asia: A review and future perspective. Earth-Science Reviews, 2021, 217, 103647.	4.0	39
36	Structural and kinematic analysis of Cenozoic rift basins in South China Sea: A synthesis. Earth-Science Reviews, 2021, 216, 103522.	4.0	38

#	Article	IF	Citations
37	The Dynamic Topography of Eastern China Since the Latest Jurassic Period. Tectonics, 2018, 37, 1274-1291.	1.3	35
38	Geometry and timing of Mesozoic deformation in the western part of the Xuefeng Tectonic Belt, South China: Implications for intra-continental deformation. Journal of Asian Earth Sciences, 2012, 49, 330-338.	1.0	34
39	Dynamics of exhumation and deformation of HP-UHP orogens in double subduction-collision systems: Numerical modeling and implications for the Western Dabie Orogen. Earth-Science Reviews, 2018, 182, 68-84.	4.0	34
40	Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea. Geoscience Frontiers, 2020, 11, 1231-1251.	4.3	33
41	Structural geometry of an exhumed UHP terrane in the eastern Sulu Orogen, China: Implications for continental collisional processes. Journal of Structural Geology, 2010, 32, 423-444.	1.0	32
42	Experimental study and active tectonics on the Zhangjiakou-Penglai fault zone across North China. Journal of Asian Earth Sciences, 2015, 114, 18-27.	1.0	32
43	Temporal and spatial distribution of Cenozoic igneous rocks in the South China Sea and its adjacent regions: implications for tectonoâ€magmatic evolution. Geological Journal, 2016, 51, 429-447.	0.6	32
44	Detrital zircon U-Pb geochronology and provenance of the Sanxiatian Formation (Huade Group) in the North China Craton: Implications for the breakup of the Columbia supercontinent. Precambrian Research, 2018, 310, 305-319.	1.2	30
45	A deforming plate tectonic model of the South China Block since the Jurassic. Gondwana Research, 2022, 102, 3-16.	3.0	30
46	BASIC STRCUTURAL PATTERN AND TECTONIC MODELS OF THE SOUTH CHINA SEA: PROBLEMS, ADVANCES AND CONTROVERSIES. Marine Geology & Quaternary Geology, 2013, 32, 35-53.	0.1	30
47	A tectonic transition from closure of the Paleo-Asian Οcean to subduction of the Paleo-Pacific Plate: Insights from early Mesozoic igneous rocks in eastern Jilin Province, NE China. Gondwana Research, 2022, 102, 332-353.	3.0	29
48	Passive magmatism on Earth and Earth-like planets. Geosystems and Geoenvironment, 2022, 1, 100008.	1.7	29
49	Structural analysis of the northern Tongbai Metamorphic Terranes, Central China: Implications for Paleozoic accretionary process on the southern margin of the North China Craton. Journal of Asian Earth Sciences, 2012, 47, 143-154.	1.0	27
50	Holocene intracontinental deformation of the northern North China Plain: Evidence of tectonic ground fissures. Journal of Asian Earth Sciences, 2016, 119, 49-64.	1.0	27
51	Ocean-continent transition architecture and breakup mechanism at the mid-northern South China Sea. Earth-Science Reviews, 2021, 217, 103620.	4.0	27
52	Thermochronology of the Sulu ultrahigh-pressure metamorphic terrane: Implications for continental collision and lithospheric thinning. Tectonophysics, 2017, 712-713, 10-29.	0.9	25
53	Cenozoic positive inversion tectonics and its migration in the East China Sea Shelf Basin. Geological Journal, 2016, 51, 176-187.	0.6	24
54	The generation and reworking of continental crust during early Paleozoic in Gondwanan affinity terranes from the Tibet Plateau. Earth-Science Reviews, 2019, 190, 486-497.	4.0	24

#	Article	IF	Citations
55	Spatio-temporal evolution and dynamic origin of Jurassic-Cretaceous magmatism in the South China Block. Earth-Science Reviews, 2021, 217, 103605.	4.0	24
56	The Indiaâ€Eurasia convergence system: Late Oligocene to early Miocene passive roof thrusting driven by deepâ€rooted duplex stacking. Geosystems and Geoenvironment, 2022, 1, 100006.	1.7	23
57	Destruction effect on Meso-Neoproterozoic oil-gas traps derived from Meso-Cenozoic deformation in the North China Craton. Precambrian Research, 2019, 333, 105427.	1.2	22
58	Deep structures and surface boundaries among Proto-Tethyan micro-blocks: Constraints from seismic tomography and aeromagnetic anomalies in the Central China Orogen. Tectonophysics, 2015, 659, 109-121.	0.9	21
59	Porphyry copper and skarn fertility of the northern Qinghai-Tibet Plateau collisional granitoids. Earth-Science Reviews, 2021, 214, 103524.	4.0	21
60	CENOZOIC TECTONICS AND DYNAMICS OF BASIN GROUPS OF THE NORTHERN SOUTH CHINA SEA. Marine Geology & Quaternary Geology, 2013, 32, 79-93.	0.1	21
61	Long-term Phanerozoic sea level change from solid Earth processes. Earth and Planetary Science Letters, 2022, 584, 117451.	1.8	21
62	Formation, tectonic evolution and dynamics of the East China Sea Shelf Basin. Geological Journal, 2016, 51, 162-175.	0.6	20
63	Numerical modelling of stress fields and earthquakes jointly controlled by NE- and NW-trending fault zones in the Central North China Block. Journal of Asian Earth Sciences, 2015, 114, 28-40.	1.0	18
64	Precambrian tectonic affinity of the $\langle scp \rangle N \langle scp \rangle O(scp) = N \langle $	0.6	18
65	Causes of earthquake spatial distribution beneath the Izu-Bonin-Mariana Arc. Journal of Asian Earth Sciences, 2018, 151, 90-100.	1.0	18
66	Neoproterozoic Amdo and Jiayuqiao microblocks in the Tibetan Plateau: Implications for Rodinia reconstruction. Bulletin of the Geological Society of America, 2021, 133, 663-678.	1.6	18
67	Mesoâ€Cenozoic Evolution of Earth Surface System under the East Asian Tectonic Superconvergence. Acta Geologica Sinica, 2018, 92, 814-849.	0.8	17
68	Subduction–collision and exhumation of eclogites in the Lhasa terrane, Tibet Plateau. Gondwana Research, 2022, 102, 394-404.	3.0	16
69	A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution. Solid Earth, 2022, 13, 1127-1159.	1.2	16
70	Early Paleozoic Tarim Orocline: Insights from paleogeography and tectonic evolution in the Tarim Basin. Geological Journal, 2017, 52, 436-448.	0.6	14
71	The passive margin of northern Gondwana during Early Paleozoic: Evidence from the central Tibet Plateau. Gondwana Research, 2020, 78, 126-140.	3.0	14
72	Deep-shallow coupling response of the Cenozoic Bohai Bay Basin to plate interactions around the Eurasian Plate. Gondwana Research, 2022, 102, 180-199.	3.0	14

#	Article	IF	CITATIONS
73	The Bangong-Nujiang Suture Zone, Tibet Plateau: Its role in the tectonic evolution of the eastern Tethys Ocean. Earth-Science Reviews, 2021, 218, 103656.	4.0	14
74	Structural analysis of ductile shear zones in the North Qinling Orogen and its implications for the evolution of the Protoâ€Tethys Ocean. Geological Journal, 2017, 52, 202-214.	0.6	13
75	Diachroneity of continental subduction and exhumation: Constraints from the Permian-Triassic HP metamorphic terrane in the Tongbai orogen, central China. Science Bulletin, 2013, 58, 4397-4404.	1.7	12
76	Geodynamic mechanism and classification of basins in the Earth system. Gondwana Research, 2020, 102, 200-200.	3.0	12
77	Early Mesozoic intracontinental deformation in the eastern North China Block: Implication for an indentation model of North China to South China blocks. Geological Journal, 2017, 52, 8-21.	0.6	11
78	Late Triassic Dabie–Sulu Orocline: New exhumation model of the HP–UHP rocks. Geological Journal, 2017, 52, 22-31.	0.6	11
79	Linkage between reactivation of the sinistral strike-slip faults and 28 September 2018 Mw7.5 Palu earthquake, Indonesia. Science Bulletin, 2018, 63, 1635-1640.	4.3	11
80	Tectonic units of the Early Precambrian basement within the North China Craton: Constraints from gravitational and magnetic anomalies. Precambrian Research, 2018, 318, 122-132.	1.2	11
81	Early Paleozoic Orocline in the Central China Orogen. Gondwana Research, 2018, 63, 85-104.	3.0	11
82	Paleozoic to Mesozoic micro-block tectonics in the eastern Central Asian Orogenic Belt: Insights from magnetic and gravity anomalies. Gondwana Research, 2022, 102, 229-251.	3.0	11
83	Evolution of Meso-Cenozoic subduction zones in the ocean-continent connection zone of the eastern South China Block: Insights from gravity and magnetic anomalies. Gondwana Research, 2022, 102, 151-166.	3.0	11
84	Neotectonic implications and regional stress field constraints on mud volcanoes in offshore southwestern Taiwan. Marine Geology, 2018, 403, 109-122.	0.9	10
85	Early Jurassic and Late Cretaceous granites in the Tongka micro-block, Central Tibet: Implications for the evolution of the Bangong-Nujiang ocean. Journal of Asian Earth Sciences, 2020, 194, 104030.	1.0	10
86	High-silica rhyolites in the terminal stage of massive Cretaceous volcanism, SE China: Modified crustal sources and low-pressure magma chamber. Gondwana Research, 2022, 102, 133-150.	3.0	10
87	Coupled Evolution of Plate Tectonics and Basal Mantle Structure. Geochemistry, Geophysics, Geosystems, 2021, 22, .	1.0	10
88	A review of geohazards on the northern continental margin of the South China Sea. Earth-Science Reviews, 2021, 220, 103733.	4.0	10
89	Dynamic processes and mechanisms for collision to postâ€orogenic extension in the Western Dabie Orogen: Insights from numerical modeling. Geological Journal, 2017, 52, 44-58.	0.6	9
90	Mechanisms of submarine canyon formation on the northern continental slope of the South China Sea. Geological Journal, 2019, 54, 3389-3403.	0.6	9

#	Article	IF	Citations
91	2.8–1.7ÂGa history of the Jiao-Liao-Ji Belt of the North China Craton from the geochronology and geochemistry of mafic Liaohe meta-igneous rocks. Gondwana Research, 2020, 85, 55-75.	3.0	9
92	The Earth evolution as a thermal system. Geological Journal, 2016, 51, 652-668.	0.6	8
93	Earth's surface responses during geodynamic evolution: Numerical insight from the southern East China Sea Continental Shelf Basin, West Pacific. Gondwana Research, 2022, 102, 167-179.	3.0	8
94	Mesozoic subduction-related accretion of micro-blocks in the East Asian Ocean-Continent Connection Zone. Earth-Science Reviews, 2021, 216, 103575.	4.0	8
95	Cenozoic faulting response of eastern North China to subduction of the Pacific Plate: A case of study of the Luxi Block. Geological Journal, 2017, 52, 70-80.	0.6	7
96	Incremental emplacement and syn-tectonic deformation of Late Triassic granites in the Qinling Orogen: Structural and geochronological constraints. Gondwana Research, 2019, 72, 194-212.	3.0	7
97	The Yanshanian (Mesozoic) metallogenesis in China linked to crust-mantle interaction in the western Pacific margin: An overview from the Zhejiang Province. Gondwana Research, 2022, 102, 95-132.	3.0	7
98	Potential deep-buried petroleum systems in Meso-Neoproterozoic rifts of the southwestern North China Craton revealed by gravity anomalies. Precambrian Research, 2020, 346, 105764.	1.2	7
99	A missing link of the Proto-Tethys Ocean between the Qinling and Qilian orogens, China: Insights from geochronology and structural geology. Geoscience Frontiers, 2020, 11, 1495-1509.	4.3	7
100	Opposite thrust systems under the Subei-South Yellow Sea Basin: A synthesis on the closure of the eastern Tethyan Ocean. Earth-Science Reviews, 2022, 231, 104075.	4.0	7
101	Yanshanian deformation in Western Shandong, eastern North China Craton: Response to a transition from paleoâ€Pacific to Pacific Plate subduction. Geological Journal, 2017, 52, 32-43.	0.6	6
102	Magmatic activities and their impacts on oil/gas formation in the southwestern <scp>O</scp> rdos <scp>B</scp> asin, <scp>C</scp> entral <scp>C</scp> hina. Geological Journal, 2018, 53, 178-189.	0.6	6
103	Late Cretaceous-Cenozoic cooling of the southern Lower Yangtze River area: A response to subduction of the Izanagi and Pacific plates. Gondwana Research, 2022, 102, 31-45.	3.0	6
104	Triassic orocline in East Asia: Insights from a transition from passive margin to foreland basin in eastern North China Block. Geological Journal, 2017, 52, 59-69.	0.6	5
105	Contrastive analysis of gravity and magnetic anomalies between North China Craton and Indian Shield. Geological Journal, 2019, 54, 1090-1106.	0.6	5
106	The trials and tribulations of the Hawaii hot spot model. Earth-Science Reviews, 2021, 215, 103544.	4.0	5
107	Cambrian–Silurian sediments in the southeastern Qilian Orogen, NE Tibetan Plateau: Constraints on crustal and tectonic evolution of microcontinents in the northern Proto-Tethys Ocean. Journal of Asian Earth Sciences, 2022, 232, 105122.	1.0	5
108	Structural geology and tectonics in marine science: Perspectives in the research of deep sea and deep interior. Journal of Ocean University of China, 2012, 11, 257-266.	0.6	4

#	Article	IF	CITATIONS
109	Palaeomagnetic assessment of tectonic rotation in Northeast Asiai ¼ šimplications for the coupling of intracontinental deformation and mantle convection. International Geology Review, 2020, 62, 2166-2188.	1.1	4
110	Flexural subsidence modelling of post-rift paleobathymetry and sedimentary infill in the northern South China Sea margin. Journal of Asian Earth Sciences, 2022, 226, 105076.	1.0	4
111	Deep and surface driving forces to shape the Earth: Insights from the evolution of the northern South China Sea margin. Gondwana Research, 2022, , .	3.0	4
112	Origin and model of transform faults in the Okinawa Trough. Marine Geophysical Researches, 2017, 38, 137-147.	0.5	3
113	Implications of earthquakes for the slab subduction dynamic process in Southeast Asia. Journal of Asian Earth Sciences, 2020, 194, 103955.	1.0	2
114	Correlation of lithospheric "deâ€rooting―of the <scp>Suluâ€Dabie Orogen</scp> to tectonicâ€sedimentary process of the <scp>Hefei Basin</scp> : Constraints from <scp>Mesozoic</scp> coupling of basin and orogen. Geological Journal, 2020, 55, 694-711.	0.6	1
115	Yanshanian mineralization and geodynamic evolution in the Western Pacific Margin: A review of metal deposits of Zhejiang Province, China. Ore Geology Reviews, 2021, 135, 104216.	1.1	1
116	High-resolution teleseismic tomographic crustal imaging for potential seismogenic segment of the central Tan-Lu Fault Zone, East China. Tectonophysics, 2022, 823, 229196.	0.9	1
117	Mantle transition zone discontinuities beneath Taiwan and its adjacent areas: Implications for slab subductions. Tectonophysics, 2022, 826, 229248.	0.9	O