
Anna Å**š**Äbowata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6982157/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Remarkable effect of postsynthesis preparation procedures on catalytic properties of Ni-loaded BEA zeolites in hydrodechlorination of 1,2-dichloroethane. Applied Catalysis B: Environmental, 2014, 147, 208-220.	20.2	77
2	Hydrodechlorination of 1,2-dichloroethane on active carbon supported palladium–nickel catalysts. Catalysis Today, 2007, 124, 28-35.	4.4	47
3	Selective hydrodechlorination of 1,2-dichloroethane on NiSiBEA zeolite catalyst: Influence of the preparation procedure on a high dispersion of Ni centers. Microporous and Mesoporous Materials, 2013, 169, 120-127.	4.4	46
4	Hydrodechlorination of 1,2-dichloroethane and dichlorodifluoromethane over Ni/C catalysts: The effect of catalyst carbiding. Applied Catalysis A: General, 2007, 319, 181-192.	4.3	45
5	Catalytic removal of trichloroethylene from water over palladium loaded microporous and hierarchical zeolites. Applied Catalysis B: Environmental, 2016, 181, 550-560.	20.2	40
6	Hydrodechlorination over Pd–Pt/Al2O3 catalysts. Applied Catalysis A: General, 2004, 271, 61-68.	4.3	38
7	Pd-modified beta zeolite for modulated hydro-cracking of low-density polyethylene into a paraffinic-rich hydrocarbon fuel. Applied Catalysis B: Environmental, 2020, 277, 119070.	20.2	37
8	Hydrogen-assisted dechlorination of 1,2-dichloroethane on active carbon supported palladium–copper catalysts. Catalysis Today, 2011, 175, 576-584.	4.4	34
9	Hydrodechlorination of dichlorodifluoromethane, carbon tetrachloride and 1,2-dichloroethane over Pt/Al2O3 catalysts. Journal of Molecular Catalysis A, 2004, 224, 171-177.	4.8	29
10	The effect of copper and gold on the catalytic behavior of nickel/alumina catalysts in hydrogen-assisted dechlorination of 1,2-dichloroethane. Catalysis Today, 2011, 169, 186-191.	4.4	24
11	Hydrodechlorination of dichlorodifluoromethane (CFC-12) on Pd–Pt/Al2O3 catalysts. Catalysis Today, 2004, 88, 93-101.	4.4	21
12	Catalytic hydrogen-assisted dehydrochlorination of 1,2-dichloroethane over cobalt-containing beta zeolite. Catalysis Today, 2015, 251, 73-80.	4.4	20
13	Catalytic activity of HAlBEA and NixHAlBEA zeolites in hydrogen-assisted dehydrochlorination of 1,2-dichloroethane into vinyl chloride monomer. Microporous and Mesoporous Materials, 2013, 180, 209-218.	4.4	19
14	Catalytic conversion of 1,2-dichloroethane over bimetallic Cu–Ni loaded BEA zeolites. Applied Catalysis B: Environmental, 2014, 152-153, 317-327.	20.2	19
15	Influence of the postsynthesis preparation procedure on catalytic behaviour of Ag-loaded BEA zeolites in the hydrodechlorination of 1,2-dichloroethane into value added products. Applied Catalysis B: Environmental, 2016, 199, 514-522.	20.2	19
16	A novel nano-palladium catalyst for continuous-flow chemoselective hydrogenation reactions. Catalysis Communications, 2017, 94, 65-68.	3.3	19
17	Hydrogen-assisted dechlorination of 1,2-dichloroethane over silica-supported nickel–ruthenium catalysts. Catalysis Communications, 2007, 8, 11-15.	3.3	18
18	Nickel loaded zeolites FAU and MFI: Characterization and activity in water-phase hydrodehalogenation of TCE. Applied Catalysis A: General, 2018, 568, 64-75.	4.3	18

Anna Śrębowata

#	Article	IF	CITATIONS
19	Hydrodechlorination of dichlorodifluoromethane (CFC-12) over Pd/Al2O3 and Pd-Au/Al2O3 catalysts. Reaction Kinetics and Catalysis Letters, 2003, 79, 157-163.	0.6	15
20	Chemoselective flow hydrogenation of α,β – Unsaturated aldehyde with nano-nickel. Catalysis Communications, 2017, 98, 17-21.	3.3	15
21	Influence of preparation procedure on catalytic activity of PdBEA zeolites in aqueous phase hydrodechlorination of 1,1,2-trichloroethene. Microporous and Mesoporous Materials, 2017, 237, 65-73.	4.4	15
22	Hydrodechlorination of chloroalkanes on supported platinum catalysts. Reaction Kinetics and Catalysis Letters, 2006, 87, 291-296.	0.6	14
23	Remarkable effect of soft-templating synthesis procedure on catalytic properties of mesoporous carbon supported Ni in hydrodechlorination of trichloroethylene in liquid phase. Catalysis Today, 2015, 251, 60-65.	4.4	14
24	Ag–Ni bimetallic SiBEA zeolite as an efficient catalyst of hydrodechlorination of 1,2-dichloroethane towards ethylene. Catalysis Communications, 2015, 69, 154-160.	3.3	13
25	Effect of metal precursor and pretreatment conditions onÂthe catalytic activity of Ni/C inÂthe aqueous phase hydrodechlorination of 1,1,2-trichloroethene. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 3-16.	1.7	12
26	Continuous-flow hydrogenation of nitrocyclohexane toward value-added products with CuZnAl hydrotalcite derived materials. Applied Catalysis A: General, 2021, 618, 118134.	4.3	12
27	Active carbon-supported nickel–palladium catalysts for hydrodechlorination of 1,2-dichloroethane and 1,1,2-trichloroethene. Research on Chemical Intermediates, 2015, 41, 9267-9280.	2.7	11
28	Catalytic conversion of trichloroethylene on nickel containing beta zeolites into value added products. Catalysis Communications, 2014, 57, 107-110.	3.3	10
29	Tuning nano-nickel selectivity with tin in flow hydrogenation of 6-methyl-5-hepten-2-one by surface organometallic chemistry modification. Catalysis Today, 2018, 308, 38-44.	4.4	10
30	n-Hexane conversion on γ-alumina supported palladium–platinum catalysts. Adsorption, 2019, 25, 843-853.	3.0	10
31	Continuous 2-Methyl-3-butyn-2-ol Selective Hydrogenation on Pd/γ-Al2O3 as a Green Pathway of Vitamin A Precursor Synthesis. Catalysts, 2021, 11, 501.	3.5	10
32	Hydrodechlorination of 1,2-dichloroethane on nickel loaded Beta zeolite modified by copper: Influence of nickel and copper state on product selectivity. Catalysis Today, 2014, 226, 134-140.	4.4	9
33	Influence of pretreatment and reaction conditions on the catalytic activity of HAIBEA and CoHAIBEA zeolites in vinyl chloride formation from 1,2-dichloroethane. Microporous and Mesoporous Materials, 2018, 266, 32-42.	4.4	9
34	Alkane isomerization on highly reduced Pd/Al2O3 catalysts. The crucial role of Pd-Al species. Catalysis Communications, 2019, 123, 17-22.	3.3	9
35	Application of silica-supported Ir and Ir-M (M = Pt, Pd, Au) catalysts for low-temperature hydrodechlorination of tetrachloromethane. Science of the Total Environment, 2018, 644, 287-297.	8.0	8
36	<i>Onâ€ŧheâ€fly</i> Catalyst Accretion and Screening in Chemoselective Flow Hydrogenation. ChemCatChem, 2018, 10, 3641-3646.	3.7	8

Anna Śrębowata

#	Article	IF	CITATIONS
37	Aqueousâ€Phase Hydrodechlorination of Trichloroethylene on Ir Catalysts Supported on SBAâ€3 Materials. ChemCatChem, 2018, 10, 4109-4118.	3.7	7
38	Batch and flow hydrotreatment of water contaminated by trichloroethylene on active carbon supported nickel catalysts. Applied Catalysis A: General, 2019, 582, 117110.	4.3	7
39	Hydrogenolysis of carbon–halogen and carbon–carbon bonds over Pd/Nb2O5–Al2O3 catalysts. Catalysis Communications, 2009, 10, 1757-1761.	3.3	6
40	Influence of microwave activation on the catalytic behavior of Pd-Au/C catalysts employed in the hydrodechlorination of tetrachloromethane. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 375-388.	1.7	6
41	Palladium loaded BEA zeolites as efficient catalysts for aqueous-phase diclofenac hydrodechlorination. Catalysis Communications, 2020, 145, 106113.	3.3	5
42	Boosting the Performance of Nano-Ni Catalysts by Palladium Doping in Flow Hydrogenation of Sulcatone. Catalysts, 2020, 10, 1267.	3.5	4
43	Continuous-flow hydrogenation over resin supported palladium catalyst for the synthesis of industrially relevant chemicals. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 717-728.	1.7	4
44	Turbostratic carbon supported palladium as an efficient catalyst for reductive purification of water from trichloroethylene. AIMS Materials Science, 2017, 4, 1276-1288.	1.4	4
45	The impact of the hydrodechlorination process on the physicochemical properties of bimetallic Ag-CuBeta zeolite catalysts. Microporous and Mesoporous Materials, 2017, 243, 56-64.	4.4	2
46	Tuning Nanoâ€Nickel Catalyst Hydrogenation Aptitude by Onâ€theâ€Fly Zirconium Doping. ChemCatChem, 2020, 12, 3132-3138.	3.7	2
47	Hydrodechlorination of Carbon Tetrachloride and 1,2-Dichloroethane on Palladium Nanoparticles Supported on Metal Fluorides. International Journal of Green Energy, 2015, 12, 780-786.	3.8	1
48	Effect of unimodality and bimodality of Pd nanoparticles on the catalytic activity of Pd/SiO2 in the removal of diclofenac from water. Catalysis Communications, 2020, 143, 106056.	3.3	1
49	Co Loading Adjustment for the Effective Obtention of a Sedative Drug Precursor through Efficient Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-Pentenal. Catalysts, 2022, 12, 19.	3.5	1
50	Alumina modified by niobia supported nickel catalysts for hydrodechlorination of 1,2-dichloroethane. Recyclable Catalysis, 2015, 2, .	0.1	0
51	Hydrogenation by Nickel Catalysts. , 2015, , 37-78.		Ο