
Jianchun Mi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6982101/publications.pdf Version: 2024-02-01

Ιμνςμιν Μι

#	Article	IF	CITATIONS
1	Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Applied Energy, 2019, 253, 113541.	5.1	242
2	MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace. Combustion and Flame, 2013, 160, 933-946.	2.8	193
3	Progress and recent trend in MILD combustion. Science China Technological Sciences, 2011, 54, 255-269.	2.0	133
4	Importance of Initial Momentum Rate and Air-Fuel Premixing on Moderate or Intense Low Oxygen Dilution (MILD) Combustion in a Recuperative Furnace. Energy & Fuels, 2009, 23, 5349-5356.	2.5	123
5	Dualâ€Tube Helmholtz Resonatorâ€Based Triboelectric Nanogenerator for Highly Efficient Harvesting of Acoustic Energy. Advanced Energy Materials, 2019, 9, 1902824.	10.2	121
6	A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy, 2020, 78, 105279.	8.2	115
7	Emissions of NO and CO from counterflow combustion of CH4 under MILD and oxyfuel conditions. Energy, 2017, 124, 652-664.	4.5	76
8	An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition. Nano Energy, 2021, 90, 106503.	8.2	72
9	Deep Learning Neural Networks Trained with MODIS Satellite-Derived Predictors for Long-Term Global Solar Radiation Prediction. Energies, 2019, 12, 2407.	1.6	71
10	The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet. Experimental Thermal and Fluid Science, 2007, 32, 545-559.	1.5	70
11	Moderate or Intense Low-Oxygen Dilution Combustion of Methane Diluted by CO ₂ and N ₂ . Energy & Fuels, 2015, 29, 4576-4585.	2.5	69
12	Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction. Renewable and Sustainable Energy Reviews, 2019, 113, 109247.	8.2	68
13	Multi-functional wind barrier based on triboelectric nanogenerator for power generation, self-powered wind speed sensing and highly efficient windshield. Nano Energy, 2020, 73, 104736.	8.2	68
14	Impact of injection conditions on flame characteristics from a parallel multi-jet burner. Energy, 2011, 36, 6583-6595.	4.5	57
15	Volume-averaged macroscopic equation for fluid flow in moving porous media. International Journal of Heat and Mass Transfer, 2015, 82, 357-368.	2.5	57
16	Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach. Renewable and Sustainable Energy Reviews, 2019, 104, 235-261.	8.2	56
17	Comparison of turbulent jets issuing from rectangular nozzles with and without sidewalls. Experimental Thermal and Fluid Science, 2007, 32, 596-606.	1.5	55
18	Combustion of CH4/O2/N2 in a well stirred reactor. Energy, 2014, 72, 242-253.	4.5	54

JIANCHUN MI

#	Article	IF	CITATIONS
19	Influences of Reactant Injection Velocities on Moderate or Intense Low-Oxygen Dilution Coal Combustion. Energy & Fuels, 2014, 28, 369-384.	2.5	52
20	Nitric oxide of MILD combustion of a methane jet flame in hot oxidizer coflow: Its formations and emissions under H2O, CO2 and N2 dilutions. Fuel, 2018, 234, 567-580.	3.4	49
21	Premixed Moderate or Intense Low-Oxygen Dilution (MILD) Combustion from a Single Jet Burner in a Laboratory-Scale Furnace. Energy & Fuels, 2011, 25, 2782-2793.	2.5	47
22	A modified lattice Bhatnagar–Gross–Krook model for convection heat transfer in porous media. International Journal of Heat and Mass Transfer, 2016, 94, 269-291.	2.5	46
23	Global reaction mechanisms for MILD oxy-combustion of methane. Energy, 2018, 147, 839-857.	4.5	46
24	Review on MILD Combustion of Gaseous Fuel: Its Definition, Ignition, Evolution, and Emissions. Energy & Fuels, 2021, 35, 7572-7607.	2.5	45
25	Dimensions of CH ₄ -Jet Flame in Hot O ₂ /CO ₂ Coflow. Energy & Fuels, 2012, 26, 3257-3266.	2.5	43
26	Experimental investigation of aerodynamic agglomeration of fine ash particles from a 330 MW PC-fired boiler. Fuel, 2016, 165, 86-93.	3.4	43
27	First and second thermodynamic-law analyses of hydrogen-air counter-flow diffusion combustion in various combustion modes. International Journal of Hydrogen Energy, 2012, 37, 5234-5245.	3.8	41
28	Numerical Simulation of Flameless Premixed Combustion with an Annular Nozzle in a Recuperative Furnace. Chinese Journal of Chemical Engineering, 2010, 18, 10-17.	1.7	38
29	Stability and emission characteristics of nonpremixed MILD combustion from a parallel-jet burner in a cylindrical furnace. Energy, 2019, 170, 1181-1190.	4.5	38
30	Premixed MILD Combustion of Propane in a Cylindrical Furnace with a Single Jet Burner: Combustion and Emission Characteristics. Energy & amp; Fuels, 2018, 32, 8817-8829.	2.5	34
31	A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy. Nano Research, 2022, 15, 3246-3253.	5.8	32
32	A Localized Mass-Conserving Lattice Boltzmann Approach for Non-Newtonian Fluid Flows. Communications in Computational Physics, 2015, 17, 908-924.	0.7	30
33	Similarity analysis of the momentum field of a subsonic, plane air jet with varying jet-exit and local Reynolds numbers. Physics of Fluids, 2013, 25, .	1.6	25
34	A New Mesh-Independent Model for Droplet/Particle Collision. Aerosol Science and Technology, 2012, 46, 622-630.	1.5	24
35	Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures. Nano Energy, 2022, 94, 106926.	8.2	23
36	A refined global reaction mechanism for modeling coal combustion under moderate or intense low-oxygen dilution condition. Energy, 2018, 157, 764-777.	4.5	22

JIANCHUN MI

#	Article	IF	CITATIONS
37	A Self-Powered and Low Pressure Loss Gas Flowmeter Based on Fluid-Elastic Flutter Driven Triboelectric Nanogenerator. Sensors, 2020, 20, 729.	2.1	22
38	Influence of Inlet Dilution of Reactants on Premixed Combustion in a Recuperative Furnace. Flow, Turbulence and Combustion, 2011, 87, 617-638.	1.4	21
39	Optimization of the Global Reaction Mechanism for MILD Combustion of Methane Using Artificial Neural Network. Energy & Fuels, 2020, 34, 3805-3815.	2.5	20
40	Detailed investigation of NO mechanism in non-premixed oxy-fuel jet flames with CH4/H2 fuelÂblends. International Journal of Hydrogen Energy, 2018, 43, 8534-8557.	3.8	19
41	On Turbulent Jets Issuing from Notched-Rectangular and Circular Orifice Plates. Flow, Turbulence and Combustion, 2010, 84, 565-582.	1.4	17
42	PIV measurements of turbulent jets issuing from triangular and circular orifice plates. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1176-1186.	2.0	17
43	Reaction Characteristics and MILD Combustion of Residual Char in a Pilot-Scale Furnace. Energy & Fuels, 2019, 33, 12791-12800.	2.5	16
44	A novel method to improve stability of MILD combustion in a highly heat-extracted furnace. Fuel, 2021, 292, 120315.	3.4	15
45	A new type of self-excited flapping jets due to a flexible film at the nozzle exit. Experimental Thermal and Fluid Science, 2019, 106, 226-233.	1.5	14
46	On two distinct Reynolds number regimes of a turbulent square jet. Theoretical and Applied Mechanics Letters, 2015, 5, 117-120.	1.3	13
47	Combustion Characteristics of a Methane Jet Flame in Hot Oxidant Coflow Diluted by H ₂ O versus the Case by N ₂ . Energy & Fuels, 2018, 32, 875-888.	2.5	13
48	Effect of injection dynamic behavior on fuel spray penetration of common-rail injector. Energy, 2019, 188, 116060.	4.5	12
49	Nonpremixed MILD combustion in a laboratory-scale cylindrical furnace: Occurrence and identification. Energy, 2021, 216, 119295.	4.5	12
50	Experimental investigation on co-firing residual char and pulverized coal under MILD combustion using low-temperature preheating air. Energy, 2022, 244, 122574.	4.5	12
51	Fine Particle Behavior in the Air Flow Past a Triangular Cylinder. Aerosol Science and Technology, 2013, 47, 875-884.	1.5	11
52	Experimental and Numerical Study on Moderate or Intense Low-Oxygen Dilution Oxy-Combustion of Methane in a Laboratory-Scale Furnace under N ₂ , CO ₂ , and H ₂ O Dilutions. Energy & Fuels, 2021, 35, 12403-12415.	2.5	11
53	On hydrodynamic and electrical characteristics of a self-powered triboelectric nanogenerator based buoy under water ripples. Applied Energy, 2022, 308, 118323.	5.1	11
54	Large Eddy Simulation of an Initially-Confined Triangular Oscillating Jet. Flow, Turbulence and Combustion, 2012, 88, 367-386.	1.4	10

Jianchun Mi

#	Article	IF	CITATIONS
55	Thermal Characteristics of a CH ₄ Jet Flame in Hot Oxidant Stream: Dilution Effects of CO ₂ and H ₂ O. Energy & Fuels, 2018, 32, 7943-7958.	2.5	10
56	Characteristics of Nitric-Oxide Emissions from Traditional Flame and MILD Combustion Operating in a Laboratory-Scale Furnace. Journal of Thermal Science, 2020, 29, 868-883.	0.9	10
57	A new skeletal mechanism for simulating MILD combustion optimized using Artificial Neural Network. Energy, 2021, 237, 121603.	4.5	9
58	A Robust and Wearable Triboelectric Tactile Patch as Intelligent Human-Machine Interface. Materials, 2021, 14, 6366.	1.3	9
59	Diffusion Flame of a CH4/H2 Jet in a Hot Coflow: Effects of Coflow Oxygen and Temperature. Chinese Journal of Chemical Engineering, 2013, 21, 787-799.	1.7	7
60	What Differences Does Large Eddy Simulation Find among Traditional, High-Temperature, and Moderate or Intense Low Oxygen Dilution Combustion Processes of a CH ₄ /H ₂ Jet Flame in Hot Oxidizer Coflow?. Energy & Fuels, 2018, 32, 5544-5558.	2.5	7
61	Characterization of MILD Combustion of a Premixed CH ₄ /Air Jet Flame versus Its Conventional Counterpart. ACS Omega, 2019, 4, 22373-22384.	1.6	7
62	Nonpremixed Flameless Combustion in a Furnace: Influence of Burner Configuration. Energy & Fuels, 2021, 35, 3333-3347.	2.5	7
63	A Selfâ€Powered and Efficient Triboelectric Dehydrator for Separating Waterâ€inâ€Oil Emulsions with Ultrahigh Moisture Content. Advanced Materials Technologies, 2022, 7, .	3.0	7
64	Flame Structure of a Jet Flame with Penetration of Side Micro-jets. Chinese Journal of Chemical Engineering, 2008, 16, 861-866.	1.7	5
65	A New Global Mechanism for MILD Combustion Using Artificial-Neural-Network-Based Optimization. Energy & Fuels, 2021, 35, 14941-14953.	2.5	5
66	Correlation between non-Gaussian statistics of a scalar and its dissipation rate in turbulent flows. Physical Review E, 2006, 74, 016301.	0.8	4
67	lgnition, Propagation, and Stabilization of a Premixed Jet Flame from a Bluff-Body Burner. Energy & Fuels, 2021, 35, 8205-8220.	2.5	2
68	On flapping jets induced by a fluttering film and from circular nozzles of smooth contraction, orifice plate and long pipe. Experiments in Fluids, 2022, 63, 1.	1.1	2
69	Local dissipation scales in turbulent jets. Experimental Thermal and Fluid Science, 2018, 93, 178-185.	1.5	0