Jizhen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6981647/publications.pdf Version: 2024-02-01

ΙΙΖΗΕΝ ΖΗΛΝΟ

#	Article	lF	CITATIONS
1	Inducing liquid crystallinity in dilute MXene dispersions for facile processing of multifunctional fibers. Journal of Materials Chemistry A, 2022, 10, 4770-4781.	5.2	19
2	Toughening Wet‧pun Silk Fibers by Silk Nanofiber Templating. Macromolecular Rapid Communications, 2022, 43, e2100891.	2.0	11
3	Environmentally stable MXene ink for direct writing flexible electronics. Nanoscale, 2022, 14, 6299-6304.	2.8	6
4	Tough and Fatigue Resistant Cellulose Nanocrystal Stitched Ti ₃ C ₂ T <i>_x</i> MXene Films. Macromolecular Rapid Communications, 2022, 43, e2200114.	2.0	7
5	Understanding the Effect of Pore Size on Electrochemical Capacitive Performance of MXene Foams. Small, 2022, 18, .	5.2	24
6	Constructing conductive titanium carbide nanosheet (MXene) network on natural rubber foam framework for flexible strain sensor. Journal of Materials Science: Materials in Electronics, 2022, 33, 15563-15573.	1.1	8
7	Spinning Regenerated Silk Fibers with Improved Toughness by Plasticizing with Low Molecular Weight Silk. Biomacromolecules, 2021, 22, 788-799.	2.6	12
8	A nitrogenous pre-intercalation strategy for the synthesis of nitrogen-doped Ti ₃ C ₂ T _x MXene with enhanced electrochemical capacitance. Journal of Materials Chemistry A, 2021, 9, 6393-6401.	5.2	45
9	Sequentially Bridged Ti ₃ C ₂ T <i>_x</i> MXene Sheets for High Performance Applications. Advanced Materials Interfaces, 2021, 8, 2002043.	1.9	23
10	Superelastic Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Hybrid Aerogels for Compression-Resilient Devices. ACS Nano, 2021, 15, 5000-5010.	7.3	139
11	Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites. Nature Communications, 2021, 12, 3171.	5.8	57
12	Development and Applications of MXene-Based Functional Fibers. ACS Applied Materials & Interfaces, 2021, 13, 36655-36669.	4.0	47
13	Ti ₃ C ₂ T _{<i>x</i>} MXene: from dispersions to multifunctional architectures for diverse applications. Materials Horizons, 2021, 8, 2886-2912.	6.4	41
14	Scalable Fabrication of Ti ₃ C ₂ T _{<i>x</i>} MXene/RGO/Carbon Hybrid Aerogel for Organics Absorption and Energy Conversion. ACS Applied Materials & Interfaces, 2021, 13, 51333-51342.	4.0	20
15	Electrically conductive honeycomb structured graphene composites from natural protein fibre waste. Materials Letters, 2020, 264, 127311.	1.3	11
16	Cathodic electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(<scp>ii</scp>) and peroxydisulfate at pure Ti ₃ C ₂ T _x MXene electrodes. Chemical Communications, 2020, 56, 10022-10025.	2.2	26
17	MXeneâ€Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices. Advanced Functional Materials, 2020, 30, 2000739.	7.8	168
18	Bath Electrospinning of Continuous and Scalable Multifunctional MXeneâ€Infiltrated Nanoyarns. Small, 2020, 16, e2002158.	5.2	81

JIZHEN ZHANG

#	Article	IF	CITATIONS
19	Freezing Titanium Carbide Aqueous Dispersions for Ultra-long-term Storage. ACS Applied Materials & Interfaces, 2020, 12, 34032-34040.	4.0	136
20	Additive-Free MXene Liquid Crystals and Fibers. ACS Central Science, 2020, 6, 254-265.	5.3	182
21	Scalable Manufacturing of Freeâ€6tanding, Strong Ti ₃ C ₂ T <i>_x</i> MXene Films with Outstanding Conductivity. Advanced Materials, 2020, 32, e2001093.	11.1	613
22	Facile Solution Processing of Stable MXene Dispersions towards Conductive Composite Fibers. Global Challenges, 2019, 3, 1900037.	1.8	59
23	Fast and scalable wet-spinning of highly conductive PEDOT:PSS fibers enables versatile applications. Journal of Materials Chemistry A, 2019, 7, 6401-6410.	5.2	135
24	Highly Conductive Ti ₃ C ₂ T <i>_x</i> MXene Hybrid Fibers for Flexible and Elastic Fiberâ€6haped Supercapacitors. Small, 2019, 15, e1804732.	5.2	171
25	Elastic Fiber Supercapacitors for Wearable Energy Storage. Macromolecular Rapid Communications, 2018, 39, e1800103.	2.0	30
26	Highâ€Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. Small, 2018, 14, e1802225.	5.2	158
27	Liquid Crystals of Graphene Oxide: A Route Towards Solutionâ€Based Processing and Applications. Particle and Particle Systems Characterization, 2017, 34, 1600396.	1.2	22
28	A simple and large-scale method to prepare flexible hollow graphene fibers for a high-performance all-solid fiber supercapacitor. New Journal of Chemistry, 2017, 41, 11792-11799.	1.4	15
29	Fabrication of an arbitrary-shaped and nitrogen-doped graphene aerogel for highly compressible all solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18684-18690.	5.2	73
30	MXene: a potential candidate for yarn supercapacitors. Nanoscale, 2017, 9, 18604-18608.	2.8	119
31	Facile fabrication of supercapacitors with high rate capability using graphene/nickel foam electrode. Electrochimica Acta, 2016, 209, 85-94.	2.6	27
32	Quantifying the Tunable Conjugated Area of Graphene Oxide by Using Pyrene as a Fluorescent Probe. Chemistry - A European Journal, 2016, 22, 18881-18886.	1.7	6
33	One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries. Journal of Materials Science, 2016, 51, 3675-3683.	1.7	58
34	Electron transfer study on graphene modified glassy carbon substrate via electrochemical reduction and the application for tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescence sensor fabrication. Talanta, 2015, 139, 6-12.	2.9	14
35	Well-controlled atom transfer radical polymerizations of acrylates using recyclable niobium complex nanoparticle as photocatalyst under visible light irradiation. Polymer, 2015, 61, 198-203.	1.8	34
36	Mechanical properties of graphene films enhanced by homo-telechelic functionalized polymer fillers via π–Ĩ€ stacking interactions. Composites Part A: Applied Science and Manufacturing, 2015, 71, 1-8.	3.8	76

JIZHEN ZHANG

#	Article	IF	CITATIONS
37	Graphene/tri-block copolymer composites prepared via RAFT polymerizations for dual controlled drug delivery via pH stimulation and biodegradation. European Polymer Journal, 2015, 69, 559-572.	2.6	43
38	A highly conductive porous graphene electrode prepared via in situ reduction of graphene oxide using Cu nanoparticles for the fabrication of high performance supercapacitors. RSC Advances, 2015, 5, 54275-54282.	1.7	85
39	Chip-based generation of carbon nanodots via electrochemical oxidation of screen printed carbon electrodes and the applications for efficient cell imaging and electrochemiluminescence enhancement. Nanoscale, 2015, 7, 9421-9426.	2.8	25
40	Thermoresponsive Copolymer/SiO ₂ Nanoparticles with Dual Functions of Thermally Controlled Drug Release and Simultaneous Carrier Decomposition. Chemistry - A European Journal, 2014, 20, 12945-12953.	1.7	10
41	Design and synthesis of fluorescent core–shell nanoparticles with tunable lower critical solution temperature behavior and metalâ€enhanced fluorescence. Journal of Polymer Science Part A, 2014, 52, 87-95.	2.5	11
42	Well-controlled RAFT polymerization initiated by recyclable surface-modified Nb(OH) ₅ nanoparticles under visible light irradiation. Journal of Polymer Science Part A, 2014, 52, 2715-2724.	2.5	20
43	Electrical Conductivity of Graphene/Polymer Nanocomposites. Reviews in Advanced Sciences and Engineering, 2014, 3, 48-65.	0.6	7
44	Preparation of biodegradable and thermoresponsive enzyme–polymer conjugates with controllable bioactivity via RAFT polymerization. European Polymer Journal, 2013, 49, 2949-2960.	2.6	17
45	Carbon-nanotube-modified glassy carbon electrode for simultaneous determination of dopamine, ascorbic acid and uric acid: The effect of functional groups. Sensors and Actuators B: Chemical, 2012, 171-172, 1132-1140.	4.0	85