Myeong Hwan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6981056/publications.pdf Version: 2024-02-01

		567281	713466
20	2,112	15	21
papers	citations	h-index	g-index
21	21	21	3527
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent Progress in Electrode Materials for Sodiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1600943.	19.5	815
2	Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nature Materials, 2020, 19, 419-427.	27.5	328
3	Toward a low-cost high-voltage sodium aqueous rechargeable battery. Materials Today, 2019, 29, 26-36.	14.2	156
4	Abnormal self-discharge in lithium-ion batteries. Energy and Environmental Science, 2018, 11, 970-978.	30.8	114
5	Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nature Materials, 2022, 21, 664-672.	27.5	89
6	Controlling Residual Lithium in Highâ€Nickel (>90 %) Lithium Layered Oxides for Cathodes in Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 18662-18669.	13.8	81
7	Unveiling the Intrinsic Cycle Reversibility of a LiCoO ₂ Electrode at 4.8-V Cutoff Voltage through Subtractive Surface Modification for Lithium-Ion Batteries. Nano Letters, 2019, 19, 29-37.	9.1	78
8	High-Voltage Phosphate Cathodes for Rechargeable Ca-Ion Batteries. ACS Energy Letters, 2020, 5, 3203-3211.	17.4	65
9	Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery. Scientific Reports, 2018, 8, 8066.	3.3	62
10	New 4V-Class and Zero-Strain Cathode Material for Na-Ion Batteries. Chemistry of Materials, 2017, 29, 7826-7832.	6.7	61
11	A tree-like nanoporous WO ₃ photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2015, 3, 12920-12926.	10.3	60
12	Nanostructured Ti-doped hematite (α-Fe2O3) photoanodes for efficient photoelectrochemical water oxidation. International Journal of Hydrogen Energy, 2014, 39, 17501-17507.	7.1	52
13	A Biodegradable Secondary Battery and its Biodegradation Mechanism for Ecoâ€Friendly Energyâ€Storage Systems. Advanced Materials, 2021, 33, e2004902.	21.0	42
14	Simple and Effective Gas-Phase Doping for Lithium Metal Protection in Lithium Metal Batteries. Chemistry of Materials, 2017, 29, 9182-9191.	6.7	32
15	A theoretical framework for oxygen redox chemistry for sustainable batteries. Nature Sustainability, 2022, 5, 708-716.	23.7	23
16	Highly Durable and Stable Sodium Superoxide in Concentrated Electrolytes for Sodium–Oxygen Batteries. Advanced Energy Materials, 2018, 8, 1801760.	19.5	15
17	Activating layered LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a host for Mg intercalation in rechargeable Mg batteries. Materials Research Bulletin, 2017, 96, 524-532.	5.2	14
18	A Hierarchically Organized Photoelectrode Architecture for Highly Efficient CdS/CdSeâ€ S ensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1300395.	19.5	10

#	Article	IF	CITATIONS
19	A bifunctional auxiliary electrode for safe lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 24807-24813.	10.3	4
20	Controlling Residual Lithium in Highâ€Nickel (>90 %) Lithium Layered Oxides for Cathodes in Lithiumâ€ion Batteries. Angewandte Chemie, 2020, 132, 18821-18828.	2.0	2