
Stephan Dorey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6980844/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deciphering the role of plant plasma membrane lipids in response to invasion patterns: how could biology and biophysics help?. Journal of Experimental Botany, 2022, 73, 2765-2784.	2.4	8
2	Total synthesis, isolation, surfactant properties, and biological evaluation of ananatosides and related macrodilactone-containing rhamnolipids. Chemical Science, 2021, 12, 7533-7546.	3.7	12
3	Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate <i>Arabidopsis</i> innate immunity through two independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
4	Semipurified Rhamnolipid Mixes Protect <i>Brassica napus</i> Against <i>Leptosphaeria maculans</i> Early Infections. Phytopathology, 2020, 110, 834-842.	1.1	21
5	Synthetic Mono-Rhamnolipids Display Direct Antifungal Effects and Trigger an Innate Immune Response in Tomato against Botrytis Cinerea. Molecules, 2020, 25, 3108.	1.7	27
6	Biosurfactants in Plant Protection Against Diseases: Rhamnolipids and Lipopeptides Case Study. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1014.	2.0	92
7	Apoplastic invasion patterns triggering plant immunity: plasma membrane sensing at the frontline. Molecular Plant Pathology, 2019, 20, 1602-1616.	2.0	73
8	Recognition of Elicitors in Grapevine: From MAMP and DAMP Perception to Induced Resistance. Frontiers in Plant Science, 2019, 10, 1117.	1.7	55
9	Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in <i>Arabidopsis</i> plants. Science, 2019, 364, 178-181.	6.0	145
10	Rhamnolipids From Pseudomonas aeruginosa Are Elicitors Triggering Brassica napus Protection Against Botrytis cinerea Without Physiological Disorders. Frontiers in Plant Science, 2018, 9, 1170.	1.7	45
11	Draft Genome Sequence of Plant Growth-Promoting Burkholderia sp. Strain BE12, Isolated from the Rhizosphere of Maize. Genome Announcements, 2018, 6, .	0.8	4
12	Synthetic Rhamnolipid Bolaforms trigger an innate immune response in Arabidopsis thaliana. Scientific Reports, 2018, 8, 8534.	1.6	25
13	Differential Interaction of Synthetic Glycolipids with Biomimetic Plasma Membrane Lipids Correlates with the Plant Biological Response. Langmuir, 2017, 33, 9979-9987.	1.6	19
14	Recycling Mitsunobu coupling: a shortcut for troublesome esterifications. Tetrahedron, 2016, 72, 7488-7495.	1.0	1
15	Modifications of sphingolipid content affect tolerance to hemibiotrophic and necrotrophic pathogens by modulating plant defense responses in Arabidopsis. Plant Physiology, 2015, 169, pp.01126.2015.	2.3	61
16	A stereocontrolled synthesis of the hydrophobic moiety of rhamnolipids. Tetrahedron Letters, 2015, 56, 1159-1161.	0.7	7
17	Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. Environmental Microbiology Reports, 2015, 7, 570-582.	1.0	54
18	Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Frontiers in Plant Science, 2015, 6, 219.	1.7	120

STEPHAN DOREY

#	Article	IF	CITATIONS
19	Cyclic lipopeptides from <i><scp>B</scp>acillus subtilis</i> activate distinct patterns of defence responses in grapevine. Molecular Plant Pathology, 2015, 16, 177-187.	2.0	133
20	Deciphering the Role of Phytoalexins in Plant-Microorganism Interactions and Human Health. Molecules, 2014, 19, 18033-18056.	1.7	170
21	Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. Frontiers in Plant Science, 2014, 5, 249.	1.7	135
22	The grapevine flagellin receptor Vv <scp>FLS</scp> 2 differentially recognizes flagellinâ€derived epitopes from the endophytic growthâ€promoting bacterium <i>Burkholderia phytofirmans</i> and plant pathogenic bacteria. New Phytologist, 2014, 201, 1371-1384.	3.5	147
23	Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environmental Science and Pollution Research, 2014, 21, 4837-4846.	2.7	121
24	Rhamnolipids Elicit Defense Responses and Induce Disease Resistance against Biotrophic, Hemibiotrophic, and Necrotrophic Pathogens That Require Different Signaling Pathways in Arabidopsis and Highlight a Central Role for Salicylic Acid Â. Plant Physiology, 2012, 160, 1630-1641.	2.3	115
25	Characterization of a F-box gene up-regulated by phytohormones and upon biotic and abiotic stresses in grapevine. Molecular Biology Reports, 2011, 38, 3327-3337.	1.0	27
26	Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. Journal of Experimental Botany, 2011, 62, 595-603.	2.4	146
27	Rhamnolipid Biosurfactants as New Players in Animal and Plant Defense against Microbes. International Journal of Molecular Sciences, 2010, 11, 5095-5108.	1.8	193
28	Bacterial rhamnolipids are novel MAMPs conferring resistance to <i>Botrytis cinerea</i> in grapevine. Plant, Cell and Environment, 2009, 32, 178-193.	2.8	192
29	Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant Journal, 2004, 40, 213-224.	2.8	135
30	A Pharmacological Approach to Test the Diffusible Signal Activity of Reactive Oxygen Intermediates in Elicitor-Treated Tobacco Leaves. Plant and Cell Physiology, 2002, 43, 91-98.	1.5	28
31	Hydrogen Peroxide from the Oxidative Burst Is Neither Necessary Nor Sufficient for Hypersensitive Cell Death Induction, Phenylalanine Ammonia Lyase Stimulation, Salicylic Acid Accumulation, or Scopoletin Consumption in Cultured Tobacco Cells Treated with Elicitin. Plant Physiology, 1999, 121, 163-172.	2.3	133
32	Relationship Between Localized Acquired Resistance (LAR) and the Hypersensitive Response (HR): HR Is Necessary for LAR to Occur and Salicylic Acid Is Not Sufficient to Trigger LAR. Molecular Plant-Microbe Interactions, 1999, 12, 655-662.	1.4	47
33	Tobacco Class I and II Catalases Are Differentially Expressed During Elicitor-Induced Hypersensitive Cell Death and Localized Acquired Resistance. Molecular Plant-Microbe Interactions, 1998, 11, 1102-1109.	1.4	101
34	Spatial and Temporal Induction of Cell Death, Defense Genes, and Accumulation of Salicylic Acid in Tobacco Leaves Reacting Hypersensitively to a Fungal Glycoprotein Elicitor. Molecular Plant-Microbe Interactions, 1997, 10, 646-655.	1.4	126