
Rodrigo A Quintanilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6980525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Experimental Cell Research, 2004, 295, 245-257.	1.2	342
2	The Permeability Transition Pore Controls Cardiac Mitochondrial Maturation and Myocyte Differentiation. Developmental Cell, 2011, 21, 469-478.	3.1	257
3	Peroxisome Proliferator-activated Receptor Î ³ Up-regulates the Bcl-2 Anti-apoptotic Protein in Neurons and Induces Mitochondrial Stabilization and Protection against Oxidative Stress and Apoptosis. Journal of Biological Chemistry, 2007, 282, 37006-37015.	1.6	223
4	Peroxisome proliferator-activated receptor Î ³ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling. Experimental Cell Research, 2005, 304, 91-104.	1.2	181
5	Caspase-cleaved Tau Expression Induces Mitochondrial Dysfunction in Immortalized Cortical Neurons. Journal of Biological Chemistry, 2009, 284, 18754-18766.	1.6	146
6	Peroxisomal Proliferation Protects from \hat{l}^2 -Amyloid Neurodegeneration. Journal of Biological Chemistry, 2005, 280, 41057-41068.	1.6	137
7	Role of mitochondrial dysfunction in the pathogenesis of Huntington's disease. Brain Research Bulletin, 2009, 80, 242-247.	1.4	135
8	It's all about tau. Progress in Neurobiology, 2019, 175, 54-76.	2.8	134
9	Bioenergetics, mitochondria, and cardiac myocyte differentiation. Progress in Pediatric Cardiology, 2011, 31, 75-81.	0.2	126
10	Rosiglitazone Treatment Prevents Mitochondrial Dysfunction in Mutant Huntingtin-expressing Cells. Journal of Biological Chemistry, 2008, 283, 25628-25637.	1.6	117
11	Mutant Huntingtin Expression Induces Mitochondrial Calcium Handling Defects in Clonal Striatal Cells. Journal of Biological Chemistry, 2006, 281, 34785-34795.	1.6	116
12	Mitochondrial Dysfunction Contributes to the Pathogenesis of Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-12.	1.9	116
13	Trolox and 17β-Estradiol Protect against Amyloid β-Peptide Neurotoxicity by a Mechanism That Involves Modulation of the Wnt Signaling Pathway. Journal of Biological Chemistry, 2005, 280, 11615-11625.	1.6	109
14	Development or disease: duality of the mitochondrial permeability transition pore. Developmental Biology, 2017, 426, 1-7.	0.9	104
15	Truncated tau and AÎ ² cooperatively impair mitochondria in primary neurons. Neurobiology of Aging, 2012, 33, 619.e25-619.e35.	1.5	103
16	Contribution of Tau Pathology to Mitochondrial Impairment in Neurodegeneration. Frontiers in Neuroscience, 2018, 12, 441.	1.4	99
17	Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease. Molecular Neurodegeneration, 2013, 8, 45.	4.4	88
18	Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons. Neurotoxicity Research, 2005, 8, 295-304.	1.3	71

RODRIGO A QUINTANILLA

#	Article	IF	CITATIONS
19	Mitochondrial permeability transition pore contributes to mitochondrial dysfunction in fibroblasts of patients with sporadic Alzheimer's disease. Redox Biology, 2018, 19, 290-300.	3.9	64
20	Understanding Risk Factors for Alzheimer's Disease: Interplay of Neuroinflammation, Connexin-based Communication and Oxidative Stress. Archives of Medical Research, 2012, 43, 632-644.	1.5	62
21	Genetic ablation of tau improves mitochondrial function and cognitive abilities in the hippocampus. Redox Biology, 2018, 18, 279-294.	3.9	60
22	Caspase-Cleaved Tau Impairs Mitochondrial Dynamics in Alzheimer's Disease. Molecular Neurobiology, 2018, 55, 1004-1018.	1.9	59
23	Quercetin Exerts Differential Neuroprotective Effects Against H2O2 and Aβ Aggregates in Hippocampal Neurons: the Role of Mitochondria. Molecular Neurobiology, 2017, 54, 7116-7128.	1.9	56
24	Phosphorylated tau potentiates AÎ ² -induced mitochondrial damage in mature neurons. Neurobiology of Disease, 2014, 71, 260-269.	2.1	55
25	Mitochondrial Bioenergetics Is Altered in Fibroblasts from Patients with Sporadic Alzheimer's Disease. Frontiers in Neuroscience, 2017, 11, 553.	1.4	55
26	Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants, 2021, 10, 1069.	2.2	53
27	Therapeutic Actions of the Thiazolidinediones in Alzheimer's Disease. PPAR Research, 2015, 2015, 1-8.	1.1	49
28	Connexin 43 hemichannels and pannexinâ€1 channels contribute to the αâ€synucleinâ€induced dysfunction and death of astrocytes. Glia, 2019, 67, 1598-1619.	2.5	39
29	Mitochondrial-targeted active Akt protects SH-SY5Y neuroblastoma cells from staurosporine-induced apoptotic cell death. Journal of Cellular Biochemistry, 2007, 102, 196-210.	1.2	38
30	Immortalized cortical neurons expressing caspase-cleaved tau are sensitized to endoplasmic reticulum stress induced cell death. Brain Research, 2008, 1234, 206-212.	1.1	36
31	Heavy Alcohol Exposure Activates Astroglial Hemichannels and Pannexons in the Hippocampus of Adolescent Rats: Effects on Neuroinflammation and Astrocyte Arborization. Frontiers in Cellular Neuroscience, 2018, 12, 472.	1.8	34
32	Alcohol consumption during adolescence: A link between mitochondrial damage and ethanol brain intoxication. Birth Defects Research, 2017, 109, 1623-1639.	0.8	33
33	Adolescent Binge Alcohol Exposure Affects the Brain Function Through Mitochondrial Impairment. Molecular Neurobiology, 2017, 55, 4473-4491.	1.9	31
34	Possible role of mitochondrial permeability transition pore in the pathogenesis of Huntington disease. Biochemical and Biophysical Research Communications, 2017, 483, 1078-1083.	1.0	31
35	Effect of Alcohol on Hippocampal-Dependent Plasticity and Behavior: Role of Glutamatergic Synaptic Transmission. Frontiers in Behavioral Neuroscience, 2019, 13, 288.	1.0	31
36	Truncated Tau Induces Mitochondrial Transport Failure Through the Impairment of TRAK2 Protein and Bioenergetics Decline in Neuronal Cells. Frontiers in Cellular Neuroscience, 2020, 14, 175.	1.8	30

RODRIGO A QUINTANILLA

4

#	Article	IF	CITATIONS
37	Alcohol impairs hippocampal function: From NMDA receptor synaptic transmission to mitochondrial function. Drug and Alcohol Dependence, 2019, 205, 107628.	1.6	28
38	Adolescence binge alcohol consumption induces hippocampal mitochondrial impairment that persists during the adulthood. Neuroscience, 2019, 406, 356-368.	1.1	25
39	Quercetin Affects Erythropoiesis and Heart Mitochondrial Function in Mice. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-12.	1.9	24
40	Thiazolidinediones Promote Axonal Growth through the Activation of the JNK Pathway. PLoS ONE, 2013, 8, e65140.	1.1	24
41	Type 2 transglutaminase differentially modulates striatal cell death in the presence of wild type or mutant huntingtin. Journal of Neurochemistry, 2007, 102, 25-36.	2.1	22
42	Alcohol consumption during adolescence alters the hippocampal response to traumatic brain injury. Biochemical and Biophysical Research Communications, 2020, 528, 514-519.	1.0	19
43	New Implications for the Melanocortin System in Alcohol Drinking Behavior in Adolescents: The Glial Dysfunction Hypothesis. Frontiers in Cellular Neuroscience, 2017, 11, 90.	1.8	17
44	Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis. Frontiers in Physiology, 2015, 6, 350.	1.3	15
45	The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Translational Neurodegeneration, 2022, 11, .	3.6	15
46	Tau Deletion Prevents Cognitive Impairment and Mitochondrial Dysfunction Age Associated by a Mechanism Dependent on Cyclophilin-D. Frontiers in Neuroscience, 2020, 14, 586710.	1.4	14
47	Activation of the Nrf2 Pathway Prevents Mitochondrial Dysfunction Induced by Caspase-3 Cleaved Tau: Implications for Alzheimer's Disease. Antioxidants, 2022, 11, 515.	2.2	13
48	Activation of the Melanocortin-4 Receptor Prevents Oxidative Damage and Mitochondrial Dysfunction in Cultured Hippocampal Neurons Exposed to Ethanol. Neurotoxicity Research, 2020, 38, 421-433.	1.3	12
49	Ventilatory and Autonomic Regulation in Sleep Apnea Syndrome: A Potential Protective Role for Erythropoietin?. Frontiers in Physiology, 2018, 9, 1440.	1.3	9
50	NADPH oxidase contributes to oxidative damage and mitochondrial impairment induced by acute ethanol treatment in rat hippocampal neurons. Neuropharmacology, 2020, 171, 108100.	2.0	9
51	Stimulation of Melanocortin Receptor-4 (MC4R) Prevents Mitochondrial Damage Induced by Binge Ethanol Protocol in Adolescent Rat Hippocampus. Neuroscience, 2020, 438, 70-85.	1.1	8
52	Neurodegeneration in Multiple Sclerosis: The Role of Nrf2-Dependent Pathways. Antioxidants, 2022, 11, 1146.	2.2	8
53	Dietary supplementation of a sulforaphane-enriched broccoli extract protects the heart from acute cardiac stress. Journal of Functional Foods, 2020, 75, 104267.	1.6	6

54 Ethanol Consumption Affects Neuronal Function: Role of the Mitochondria. , 0, , .

4

#	Article	IF	CITATIONS
55	New Targets for Diagnosis and Treatment Against Alzheimer's Disease: The Mitochondrial Approach. , 2016, , .		2