
Lorenzo Fabrizi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6980243/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Widespread nociceptive maps in the human neonatal somatosensory cortex. ELife, 2022, 11, .	6.0	8
2	Construction and validation of a database of head models for functional imaging of the neonatal brain. Human Brain Mapping, 2021, 42, 567-586.	3.6	8
3	Sleep–wake regulation in preterm and term infants. Sleep, 2021, 44, .	1.1	20
4	The impact of parental contact upon cortical noxiousâ€related activity in human neonates. European Journal of Pain, 2021, 25, 149-159.	2.8	19
5	Altered cortical processing of somatosensory input in pre-term infants who had high-grade germinal matrix-intraventricular haemorrhage. NeuroImage: Clinical, 2020, 25, 102095.	2.7	9
6	Long-range temporal organisation of limb movement kinematics in human neonates. Clinical Neurophysiology Practice, 2020, 5, 194-198.	1.4	2
7	Quantification of neonatal procedural pain severity: a platform for estimating total pain burden in individual infants. Pain, 2020, 161, 1270-1277.	4.2	28
8	Distinct Age-Dependent C Fiber-Driven Oscillatory Activity in the Rat Somatosensory Cortex. ENeuro, 2020, 7, ENEURO.0036-20.2020.	1.9	7
9	Fronto-central slow cortical activity is attenuated during phasic events in rapid eye movement sleep at full-term birth. Early Human Development, 2019, 136, 45-48.	1.8	4
10	Event-related potentials following contraction of respiratory muscles in pre-term and full-term infants. Clinical Neurophysiology, 2019, 130, 2216-2221.	1.5	4
11	The Emergence of Hierarchical Somatosensory Processing in Late Prematurity. Cerebral Cortex, 2019, 29, 2245-2260.	2.9	27
12	P006â€Modelling sleep-wake transitions in very and moderately pre-term infants. , 2019, , .		0
13	Full 10-20 EEG application in hospitalised neonates is not associated with an increase in stress hormone levels. Clinical Neurophysiology Practice, 2018, 3, 20-21.	1.4	4
14	T152. Somatosensory evoked delta brush activity in very pre-term infants. Clinical Neurophysiology, 2018, 129, e60-e61.	1.5	3
15	A novel sensor design for accurate measurement of facial somatosensation in pre-term infants. PLoS ONE, 2018, 13, e0207145.	2.5	8
16	EEG, behavioural and physiological recordings following a painful procedure in human neonates. Scientific Data, 2018, 5, 180248.	5.3	18
17	Developmental trajectory of movement-related cortical oscillations during active sleep in a cross-sectional cohort of pre-term and full-term human infants. Scientific Reports, 2018, 8, 17516.	3.3	22
18	F83. Full 10–20 EEG application in hospitalised infants is not associated with an increase in stress hormone levels. Clinical Neurophysiology, 2018, 129, e98.	1.5	0

Lorenzo Fabrizi

#	Article	IF	CITATIONS
19	Emergence of mature cortical activity in wakefulness and sleep in healthy preterm and full-term infants. Sleep, 2018, 41, .	1.1	14
20	The distribution of pain activity across the human neonatal brain is sex dependent. Neurolmage, 2018, 178, 69-77.	4.2	36
21	Characteristics and clinical significance of delta brushes in the EEG of premature infants. Clinical Neurophysiology Practice, 2017, 2, 12-18.	1.4	58
22	Nociceptive Cortical Activity Is Dissociated from Nociceptive Behavior in Newborn Human Infants under Stress. Current Biology, 2017, 27, 3846-3851.e3.	3.9	62
23	Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI. ELife, 2017, 6, .	6.0	68
24	Encoding of mechanical nociception differs in the adult and infant brain. Scientific Reports, 2016, 6, 28642.	3.3	30
25	The Development of Nociceptive Network Activity in the Somatosensory Cortex of Freely Moving Rat Pups. Cerebral Cortex, 2016, 26, 4513-4523.	2.9	27
26	The development of the nociceptive brain. Neuroscience, 2016, 338, 207-219.	2.3	75
27	A Simple fMRI Compatible Robotic Stimulator to Study the Neural Mechanisms of Touch and Pain. Annals of Biomedical Engineering, 2016, 44, 2431-2441.	2.5	5
28	Mapping Cortical Responses to Somatosensory Stimuli in Human Infants with Simultaneous Near-Infrared Spectroscopy and Event-Related Potential Recording. ENeuro, 2016, 3, ENEURO.0026-16.2016.	1.9	51
29	Functional magnetic resonance imaging can be used to explore tactile and nociceptive processing in the infant brain. Acta Paediatrica, International Journal of Paediatrics, 2015, 104, 158-166.	1.5	54
30	Cortical activity evoked by inoculation needle prick in infants up to one-year old. Pain, 2015, 156, 222-230.	4.2	34
31	Cortical activity evoked by an acute painful tissue-damaging stimulus in healthy adult volunteers. Journal of Neurophysiology, 2013, 109, 2393-2403.	1.8	18
32	Postnatal Temporal, Spatial and Modality Tuning of Nociceptive Cutaneous Flexion Reflexes in Human Infants. PLoS ONE, 2013, 8, e76470.	2.5	66
33	Multi-modal pain measurements in infants. Journal of Neuroscience Methods, 2012, 205, 252-257.	2.5	70
34	Exploring the relationship of pain and development in the neonatal intensive care unit. Pain, 2012, 153, 1340-1341.	4.2	4
35	Examining the Effects of Sucrose on Infant Physiology. Pediatric Research, 2011, 70, 50-50.	2.3	1
36	Electrophysiological Measurements and Analysis of Nociception in Human Infants. Journal of Visualized Experiments, 2011, , .	0.3	8

Lorenzo Fabrizi

#	Article	IF	CITATIONS
37	A Shift in Sensory Processing that Enables the Developing Human Brain to Discriminate Touch from Pain. Current Biology, 2011, 21, 1552-1558.	3.9	229
38	Evoked potentials generated by noxious stimulation in the human infant brain. European Journal of Pain, 2010, 14, 321-326.	2.8	147
39	A method for removing artefacts from continuous EEG recordings during functional electrical impedance tomography for the detection of epileptic seizures. Physiological Measurement, 2010, 31, S57-S72.	2.1	11
40	Premature infants display increased noxious-evoked neuronal activity in the brain compared to healthy age-matched term-born infants. NeuroImage, 2010, 52, 583-589.	4.2	170
41	Oral sucrose as an analgesic drug for procedural pain in newborn infants: a randomised controlled trial. Lancet, The, 2010, 376, 1225-1232.	13.7	304
42	An electrode addressing protocol for imaging brain function with electrical impedance tomography using a 16-channel semi-parallel system. Physiological Measurement, 2009, 30, S85-S101.	2.1	28
43	A comparison of two EIT systems suitable for imaging impedance changes in epilepsy. Physiological Measurement, 2009, 30, S103-S120.	2.1	25
44	Use of anisotropic modelling in electrical impedance tomography; Description of method and preliminary assessment of utility in imaging brain function in the adult human head. NeuroImage, 2008, 43, 258-268.	4.2	105
45	Analysis of resting noise characteristics of three EIT systems in order to compare suitability for time difference imaging with scalp electrodes during epileptic seizures. Physiological Measurement, 2007, 28, S217-S236.	2.1	19
46	A feasibility study for imaging of epileptic seizures by EIT using a realistic FEM of the head. , 2007, , 3874-3877.		3
47	Evaluation of the performance of the Multifrequency Electrical Impedance Tomography (MFEIT) intended for imaging acute stroke. , 2007, , 543-547.		3
48	Analysis of resting noise characteristics of three EIT systems in order to compare suitability for time difference imaging with scalp electrodes during epilepsy. , 2007, , 568-571.		3
49	Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans. Physiological Measurement, 2006, 27, S163-S174.	2.1	67