## Marc Meuris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6979575/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Novel Strategy for the Application of an Oxide Layer to the Front Interface of<br>Cu(In,Ga)Se <sub>2</sub> Thin Film Solar Cells: Al <sub>2</sub> O <sub>3</sub> /HfO <sub>2</sub><br>Multi-Stack Design With Contact Openings. IEEE Journal of Photovoltaics, 2022, 12, 301-308.                                | 1.5 | 4         |
| 2  | Comparison of a bottom-up and a top-down approach for the creation of contact openings in a multi-stack oxide layer at the front interface of Cu(In,Ga)Se2. Solar Energy, 2022, 237, 161-172.                                                                                                                      | 2.9 | 1         |
| 3  | Round-robin of damp heat tests using CICS solar cells. Solar Energy, 2021, 214, 393-399.                                                                                                                                                                                                                           | 2.9 | 2         |
| 4  | Novel cost-effective approach to produce nano-sized contact openings in an aluminum oxide passivation layer up to 30 nm thick for CIGS solar cells. Journal Physics D: Applied Physics, 2021, 54, 234004.                                                                                                          | 1.3 | 4         |
| 5  | Bias dependent admittance spectroscopy: the impact of sodium supply on the Cu(In,Ga)Se2 growth , 2021, , .                                                                                                                                                                                                         |     | 0         |
| 6  | Comparative Study of Al <sub>2</sub> O <sub>3</sub> and HfO <sub>2</sub> for Surface Passivation of<br>Cu(In,Ga)Se <sub>2</sub> Thin Films: An Innovative Al <sub>2</sub> O <sub>3</sub> /HfO <sub>2</sub><br>Multistack Design. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100073. | 0.8 | 5         |
| 7  | A multi-stack Al <sub>2</sub> O <sub>3</sub> /HfO <sub>2</sub> design with contact openings for front surface of Cu(In,Ga)Se <sub>2</sub> solar cells. , 2021, , .                                                                                                                                                 |     | 1         |
| 8  | Detrimental Impact of Na Upon Rb Postdeposition Treatments of Cu(In,Ga)Se 2 Absorber Layers. Solar<br>Rrl, 2021, 5, 2100390.                                                                                                                                                                                       | 3.1 | 4         |
| 9  | Ultrathin Cu(In,Ga)Se2 Solar Cells with Ag/AlOx Passivating Back Reflector. Energies, 2021, 14, 4268.                                                                                                                                                                                                              | 1.6 | 4         |
| 10 | Dominant Processing Factors in Two-Step Fabrication of Pure Sulfide CIGS Absorbers. Energies, 2021, 14, 4737.                                                                                                                                                                                                      | 1.6 | 4         |
| 11 | Bias dependent admittance spectroscopy of thin film solar cells: KF post deposition treatment,<br>accelerated lifetime testing, and their effect on the CVf loss maps. Solar Energy Materials and Solar<br>Cells, 2021, 231, 111289.                                                                               | 3.0 | 1         |
| 12 | Investigating the experimental space for two-step Cu(In,Ga)(S,Se)2 absorber layer fabrication: A design of experiment approach. Thin Solid Films, 2021, 738, 138958.                                                                                                                                               | 0.8 | 3         |
| 13 | Innovative and industrially viable approach to fabricate AlOx rear passivated ultra-thin Cu(In, Ga)Se2<br>(CIGS) solar cells. Solar Energy, 2020, 207, 1002-1008.                                                                                                                                                  | 2.9 | 23        |
| 14 | Intermediate scale bandgap fluctuations in ultrathin Cu(In,Ga)Se2 absorber layers. Journal of Applied<br>Physics, 2020, 128, 163102.                                                                                                                                                                               | 1.1 | 5         |
| 15 | Study of Ammonium Sulfide Surface Treatment for Ultrathin Cu(In,Ga)Se <sub>2</sub> with Different<br>Cu/(Ga + In) Ratios. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000307.                                                                                                        | 0.8 | 5         |
| 16 | Rear surface passivation of ultra-thin CIGS solar cells using atomic layer deposited HfO <sub>x</sub> .<br>EPJ Photovoltaics, 2020, 11, 10.                                                                                                                                                                        | 0.8 | 17        |
| 17 | Inclusion of Water in Cu(In, Ga)Se2 Absorber Material During Accelerated Lifetime Testing. ACS Applied Energy Materials, 2020, 3, 5120-5125.                                                                                                                                                                       | 2.5 | 14        |
| 18 | Impact of photovoltaic technology and feeder voltage level on the efficiency of façade<br>building-integrated photovoltaic systems. Applied Energy, 2020, 269, 115039.                                                                                                                                             | 5.1 | 9         |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Sn Substitution by Ge: Strategies to Overcome the Open-Circuit Voltage Deficit of Kesterite Solar<br>Cells. ACS Applied Energy Materials, 2020, 3, 5830-5839.                                                                      | 2.5 | 32        |
| 20 | Bias-Dependent Admittance Spectroscopy of Thin-Film Solar Cells: Experiment and Simulation. IEEE<br>Journal of Photovoltaics, 2020, 10, 1102-1111.                                                                                 | 1.5 | 13        |
| 21 | High <i>V</i> <sub>oc</sub> upon KF Post-Deposition Treatment for Ultrathin Single-Stage<br>Coevaporated Cu(In, Ga)Se <sub>2</sub> Solar Cells. ACS Applied Energy Materials, 2019, 2, 6102-6111.                                  | 2.5 | 22        |
| 22 | Wide band gap kesterite absorbers for thin film solar cells: potential and challenges for their deployment in tandem devices. Sustainable Energy and Fuels, 2019, 3, 2246-2259.                                                    | 2.5 | 19        |
| 23 | Dielectric-Based Rear Surface Passivation Approaches for Cu(In,Ga)Se2 Solar Cells—A Review. Applied<br>Sciences (Switzerland), 2019, 9, 677.                                                                                       | 1.3 | 46        |
| 24 | Crystallization properties of Cu2ZnGeSe4. Thin Solid Films, 2019, 670, 76-79.                                                                                                                                                      | 0.8 | 10        |
| 25 | Alkali treatment for single-stage co-evaporated thin CuIn0.7Ga0.3Se2 solar cells. Thin Solid Films, 2019, 671, 44-48.                                                                                                              | 0.8 | 13        |
| 26 | A study to improve light confinement and rear-surface passivation in a thin-Cu(In, Ga)Se2 solar cell.<br>Thin Solid Films, 2019, 669, 399-403.                                                                                     | 0.8 | 18        |
| 27 | Managing PV power injection and storage, enabling a larger direct consumption of renewable energy:<br>A case study for the Belgian electricity system. Progress in Photovoltaics: Research and Applications,<br>2019, 27, 905-917. | 4.4 | 3         |
| 28 | Surface Passivation of CIGS Solar Cells Using Gallium Oxide. Physica Status Solidi (A) Applications and<br>Materials Science, 2018, 215, 1700826.                                                                                  | 0.8 | 36        |
| 29 | Doping of Cu2ZnSnSe4 solar cells with Na+ or K+ alkali ions. Journal of Materials Chemistry A, 2018, 6,<br>2653-2663.                                                                                                              | 5.2 | 19        |
| 30 | Wet Processing in State-of-the-Art Cu(In,Ga)(S,Se) <sub>2</sub> Thin Film Solar Cells. Solid State<br>Phenomena, 2018, 282, 300-305.                                                                                               | 0.3 | 3         |
| 31 | Fabrication of high band gap kesterite solar cell absorber materials for tandem applications. Thin<br>Solid Films, 2018, 660, 247-252.                                                                                             | 0.8 | 13        |
| 32 | P–N Junction Passivation in Kesterite Solar Cells by Use of Solution-Processed TiO2 Layer. IEEE Journal of Photovoltaics, 2017, 7, 1130-1135.                                                                                      | 1.5 | 11        |
| 33 | Synthesis and characterization of (Cd,Zn)S buffer layer for Cu2ZnSnSe4solar cells. Journal Physics D:<br>Applied Physics, 2017, 50, 285501.                                                                                        | 1.3 | 12        |
| 34 | Modelling of Cu <sub>2</sub> ZnSnSe <sub>4</sub> -CdS-ZnO thin film solar cell. Materials Research<br>Express, 2017, 4, 116403.                                                                                                    | 0.8 | 1         |
| 35 | Interlaboratory comparison of photovoltaic performance measurements using CIGS solar cells. , 2017, , .                                                                                                                            |     | 1         |
| 36 | Effect of different alkali (Li, Na, K, Rb, Cs) metals on Cu 2 ZnSnSe 4 solar cells. Thin Solid Films, 2017,<br>633, 156-161.                                                                                                       | 0.8 | 52        |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Effect of Sn/Zn/Cu precursor stack thickness on two-step processed kesterite solar cells. Thin Solid<br>Films, 2017, 633, 127-130.                                                                                                      | 0.8  | 8         |
| 38 | Effect of ammonium sulfide treatments on the surface properties of Cu2ZnSnSe4 thin films. Thin Solid Films, 2017, 633, 135-140.                                                                                                         | 0.8  | 7         |
| 39 | Effect of the duration of a wet KCN etching step and post deposition annealing on the efficiency of Cu<br>2 ZnSnSe 4 solar cells. Thin Solid Films, 2017, 633, 166-171.                                                                 | 0.8  | 4         |
| 40 | Effect of Cu content and temperature on the properties of Cu <sub>2</sub> ZnSnSe <sub>4</sub> solar cells. EPJ Photovoltaics, 2016, 7, 70304.                                                                                           | 0.8  | 8         |
| 41 | Progress in Cleaning and Wet Processing for Kesterite Thin Film Solar Cells. Solid State Phenomena, 2016, 255, 348-353.                                                                                                                 | 0.3  | 2         |
| 42 | Fabrication and characterization of ternary Cu8SiS6 and Cu8SiSe6 thin film layers for optoelectronic applications. Thin Solid Films, 2016, 616, 649-654.                                                                                | 0.8  | 6         |
| 43 | KCN Chemical Etch for Interface Engineering in Cu <sub>2</sub> ZnSnSe <sub>4</sub> Solar Cells. ACS<br>Applied Materials & Interfaces, 2015, 7, 14690-14698.                                                                            | 4.0  | 62        |
| 44 | Impact of the Cd <sup>2+</sup> treatment on the electrical properties of<br>Cu <sub>2</sub> ZnSnSe <sub>4</sub> and Cu(In,Ga)Se <sub>2</sub> solar cells. Progress in<br>Photovoltaics: Research and Applications, 2015, 23, 1608-1620. | 4.4  | 28        |
| 45 | Effect of selenium content of CulnSex alloy nanopowder precursors on recrystallization of printed<br>CulnSe2 absorber layers during selenization heat treatment. Thin Solid Films, 2015, 582, 11-17.                                    | 0.8  | 9         |
| 46 | Effect of the burn-out step on the microstructure of the solution-processed Cu(In,Ga)Se2 solar cells.<br>Thin Solid Films, 2015, 583, 142-150.                                                                                          | 0.8  | 4         |
| 47 | Investigation of Properties Limiting Efficiency in<br>Cu <sub>2</sub> ZnSnSe <sub>4</sub> -Based Solar Cells. IEEE Journal of<br>Photovoltaics, 2015, 5, 649-655.                                                                       | 1.5  | 20        |
| 48 | Physical and electrical characterization of high-performance Cu 2 ZnSnSe 4 based thin film solar cells. Thin Solid Films, 2015, 582, 224-228.                                                                                           | 0.8  | 55        |
| 49 | Surface Cleaning and Passivation Using (NH <sub>4</sub> ) <sub>2</sub> S Treatment for<br>Cu(In,Ga)Se <sub>2</sub> Solar Cells: A Safe Alternative to KCN. Advanced Energy Materials, 2015, 5,<br>1401689.                              | 10.2 | 36        |
| 50 | Selenization of printed Cu–In–Se alloy nanopowder layers for fabrication of CuInSe2 thin film solar cells. Thin Solid Films, 2015, 582, 18-22.                                                                                          | 0.8  | 11        |
| 51 | Physical characterization of Cu2ZnGeSe4 thin films from annealing of Cu–Zn–Ge precursor layers.<br>Thin Solid Films, 2015, 582, 171-175.                                                                                                | 0.8  | 31        |
| 52 | Spectral current–voltage analysis of kesterite solar cells. Journal Physics D: Applied Physics, 2014, 47,<br>175101.                                                                                                                    | 1.3  | 33        |
| 53 | Microstructural analysis of 9.7% efficient Cu2ZnSnSe4 thin film solar cells. Applied Physics Letters, 2014, 105, .                                                                                                                      | 1.5  | 19        |
| 54 | Effect of Binder Content in Cu–In–Se Precursor Ink on the Physical and Electrical Properties of<br>Printed CuInSe <sub>2</sub> Solar Cells. Journal of Physical Chemistry C, 2014, 118, 27201-27209.                                    | 1.5  | 9         |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mechanical synthesis of high purity Cu–In–Se alloy nanopowder as precursor for printed CISe thin<br>film solar cells. Advanced Powder Technology, 2014, 25, 1254-1261.                                                                                | 2.0 | 10        |
| 56 | 18% Efficiency IBC Cell With Rear-Surface Processed on Quartz. IEEE Journal of Photovoltaics, 2013, 3, 684-689.                                                                                                                                       | 1.5 | 10        |
| 57 | Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells. Applied Physics Letters, 2013, 103, .                                                                                                                                   | 1.5 | 199       |
| 58 | Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers.<br>Thin Solid Films, 2013, 535, 348-352.                                                                                                           | 0.8 | 27        |
| 59 | Impact of ammonium sulfide solution on electronic properties and ambient stability of germanium surfaces: towards Ge-based microelectronic devices. Journal of Materials Chemistry C, 2013, 1, 4105.                                                  | 2.7 | 13        |
| 60 | Liquid-Phase Adsorption of Sulfur on Germanium: Reaction Mechanism and Atomic Geometry. Journal of Physical Chemistry C, 2013, 117, 7451-7458.                                                                                                        | 1.5 | 6         |
| 61 | Oxidation and Sulfidation of Germanium Surfaces: A Comparative Atomic Level Study of Different Passivation Schemes. ECS Transactions, 2013, 50, 569-579.                                                                                              | 0.3 | 2         |
| 62 | Integration of InGaAs Channel n-MOS Devices on 200mm Si Wafers Using the Aspect-Ratio-Trapping<br>Technique. ECS Transactions, 2012, 45, 115-128.                                                                                                     | 0.3 | 39        |
| 63 | InGaAs MOS Transistors Fabricated through a Digital-Etch Gate-Recess Process and the Influence of Forming Gas Anneal on Their Electrical Behavior. ECS Journal of Solid State Science and Technology, 2012, 1, P310-P314.                             | 0.9 | 10        |
| 64 | Oxide Trapping in the InGaAs–\$hbox{Al}_{2} hbox{O}_{3}\$ System and the Role of Sulfur in Reducing the \$ hbox{Al}_{2}hbox{O}_{3}\$ Trap Density. IEEE Electron Device Letters, 2012, 33, 1544-1546.                                                 | 2.2 | 23        |
| 65 | Simulation Study of Performance for a 20-nm Gate Length In\$_{f 0.53}\$Ga\$_{f 0.47}\$As Implant Free Quantum Well MOSFET. IEEE Nanotechnology Magazine, 2012, 11, 808-817.                                                                           | 1.1 | 7         |
| 66 | Adsorption of O <sub>2</sub> on Ge(100): Atomic Geometry and Site-Specific Electronic Structure.<br>Journal of Physical Chemistry C, 2012, 116, 9925-9929.                                                                                            | 1.5 | 13        |
| 67 | Crystalline thinâ€foil silicon solar cells: where crystalline quality meets thinâ€film processing. Progress<br>in Photovoltaics: Research and Applications, 2012, 20, 770-784.                                                                        | 4.4 | 74        |
| 68 | The implant-free quantum well field-effect transistor: Harnessing the power of heterostructures.<br>Thin Solid Films, 2012, 520, 3326-3331.                                                                                                           | 0.8 | 8         |
| 69 | A Fast and Accurate Method to Study the Impact of Interface Traps on Germanium MOS Performance.<br>IEEE Transactions on Electron Devices, 2011, 58, 938-944.                                                                                          | 1.6 | 12        |
| 70 | Low-Frequency Noise Characterization of Strained Germanium pMOSFETs. IEEE Transactions on Electron Devices, 2011, 58, 3132-3139.                                                                                                                      | 1.6 | 19        |
| 71 | A Combined Interface and Border Trap Model for High-Mobility Substrate<br>Metal–Oxide–Semiconductor Devices Applied to \$hbox{In}_{0.53} hbox{Ga}_{0.47}hbox{As}\$ and InP<br>Capacitors. IEEE Transactions on Electron Devices, 2011, 58, 3890-3897. | 1.6 | 96        |
| 72 | Experimental and theoretical investigation of defects at (100) Si1â^'xGex/oxide interfaces.<br>Microelectronic Engineering, 2011, 88, 383-387.                                                                                                        | 1.1 | 3         |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effects of surface passivation during atomic layer deposition of Al2O3 on In0.53Ga0.47As substrates.<br>Microelectronic Engineering, 2011, 88, 431-434.                               | 1.1 | 16        |
| 74 | Design and analysis of the As implant-free quantum-well device structure. Microelectronic Engineering, 2011, 88, 358-361.                                                             | 1.1 | 11        |
| 75 | H2S molecular beam passivation of Ge(001). Microelectronic Engineering, 2011, 88, 399-402.                                                                                            | 1.1 | 8         |
| 76 | Silicon and selenium implantation and activation in In0.53Ga0.47As under low thermal budget conditions. Microelectronic Engineering, 2011, 88, 155-158.                               | 1.1 | 20        |
| 77 | Al2O3 stacks on In0.53Ga0.47As substrates: In situ investigation of the interface. Microelectronic Engineering, 2011, 88, 435-439.                                                    | 1.1 | 4         |
| 78 | Growth of high quality InP layers in STI trenches on miscut Si (001) substrates. Journal of Crystal<br>Growth, 2011, 315, 32-36.                                                      | 0.7 | 17        |
| 79 | Numerical analysis of the new Implant-Free Quantum-Well CMOS: DualLogic approach. Solid-State<br>Electronics, 2011, 63, 14-18.                                                        | 0.8 | 4         |
| 80 | Defect density reduction of the Al2O3/GaAs(001) interface by using H2S molecular beam passivation.<br>Surface Science, 2011, 605, 1778-1783.                                          | 0.8 | 10        |
| 81 | Ammonium sulfide vapor passivation of In0.53Ga0.47As and InP surfaces. Applied Physics Letters, 2011, 99, .                                                                           | 1.5 | 26        |
| 82 | Atomic Layer Deposition of High-κ Dielectrics on Sulphur-Passivated Germanium. Journal of the<br>Electrochemical Society, 2011, 158, H687.                                            | 1.3 | 18        |
| 83 | Towards Passivation of Ge(100) Surfaces by Sulfur Adsorption from a (NH4)2S Solution: A Combined NEXAFS, STM and LEED Study. Journal of the Electrochemical Society, 2011, 158, H589. | 1.3 | 12        |
| 84 | Self-Affine Surface Roughness of Chemically and Thermally Cleaned Ge(100) Surfaces. Journal of the<br>Electrochemical Society, 2011, 158, H1090.                                      | 1.3 | 5         |
| 85 | Heterogeneous Integration and Fabrication of III-V MOS Devices in a 200mm Processing Environment.<br>ECS Transactions, 2011, 35, 299-309.                                             | 0.3 | 5         |
| 86 | Electrical TCAD Simulations of a Germanium pMOSFET Technology. IEEE Transactions on Electron Devices, 2010, 57, 2539-2546.                                                            | 1.6 | 92        |
| 87 | Performance enhancement in Ge pMOSFETs with <100> orientation fabricated with a Si-compatible process flow. Microelectronic Engineering, 2010, 87, 2115-2118.                         | 1.1 | 3         |
| 88 | Si versus Ge for future microelectronics. Thin Solid Films, 2010, 518, 2301-2306.                                                                                                     | 0.8 | 19        |
| 89 | P+/n junction leakage in thin selectively grown Ge-in-STI substrates. Thin Solid Films, 2010, 518,<br>2489-2492.                                                                      | 0.8 | 11        |
| 90 | Fabrication of high quality Ge virtual substrates by selective epitaxial growth in shallow trench<br>isolated Si (001) trenches. Thin Solid Films, 2010, 518, 2538-2541.              | 0.8 | 21        |

| #   | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Short-channel epitaxial germanium pMOS transistors. Thin Solid Films, 2010, 518, S88-S91.                                                                                                                                                                             | 0.8 | 5         |
| 92  | Interface analysis of Ge ultra thin layers intercalated between GaAs substrates and oxide stacks. Thin Solid Films, 2010, 518, S123-S127.                                                                                                                             | 0.8 | 6         |
| 93  | Selective Epitaxial Growth of InP in STI Trenches on Off-Axis Si (001) Substrates. ECS Transactions, 2010, 27, 959-964.                                                                                                                                               | 0.3 | 13        |
| 94  | Selective Area Growth of InP in Shallow-Trench-Isolated Structures on Off-Axis Si(001) Substrates.<br>Journal of the Electrochemical Society, 2010, 157, H1023.                                                                                                       | 1.3 | 28        |
| 95  | Effects of Halo Doping and Si Capping Layer Thickness on Total-Dose Effects in Ge p-MOSFETs. IEEE<br>Transactions on Nuclear Science, 2010, 57, 1933-1939.                                                                                                            | 1.2 | 15        |
| 96  | Calculation of the electron mobility in III-V inversion layers with high-κ dielectrics. Journal of Applied<br>Physics, 2010, 108, 103705.                                                                                                                             | 1.1 | 29        |
| 97  | High FET Performance for a Future CMOS \$hbox{GeO}_{2}\$ -Based Technology. IEEE Electron Device<br>Letters, 2010, 31, 402-404.                                                                                                                                       | 2.2 | 50        |
| 98  | (Invited) Exploring the ALD Al <sub>2</sub> O <sub>3</sub> /In <sub>0.53</sub> Ga <sub>0.47</sub> As and<br>Al <sub>2</sub> O <sub>3</sub> /Ge Interface Properties: A Common Gate Stack Approach for Advanced<br>III-V/Ge CMOS. ECS Transactions, 2010, 28, 173-183. | 0.3 | 16        |
| 99  | (Invited) Selective Epitaxial Growth of III-V Semiconductor Heterostructures on Si Substrates for<br>Logic Applications. ECS Transactions, 2010, 33, 933-939.                                                                                                         | 0.3 | 9         |
| 100 | Effective reduction of interfacial traps in Al2O3/GaAs (001) gate stacks using surface engineering and thermal annealing. Applied Physics Letters, 2010, 97, 112901.                                                                                                  | 1.5 | 66        |
| 101 | On the interface state density at In0.53Ga0.47As/oxide interfaces. Applied Physics Letters, 2009, 95, .                                                                                                                                                               | 1.5 | 99        |
| 102 | A theoretical study of the initial oxidation of the GaAs(001)-β2(2×4) surface. Applied Physics Letters, 2009, 95, .                                                                                                                                                   | 1.5 | 31        |
| 103 | The Fermi-level efficiency method and its applications on high interface trap density oxide-semiconductor interfaces. Applied Physics Letters, 2009, 94, .                                                                                                            | 1.5 | 50        |
| 104 | Valence band energy in confined Si1â^'xGex (0.28 <x<0.93) 172106.<="" 2009,="" 94,="" applied="" layers.="" letters,="" physics="" td=""><td>1.5</td><td>18</td></x<0.93)>                                                                                            | 1.5 | 18        |
| 105 | Investigations of the Surface Chemical Composition and Atomic Structure of ex-situ Sulfur Passivated Ge(100). ECS Transactions, 2009, 25, 421-432.                                                                                                                    | 0.3 | 4         |
| 106 | The Influence of the Epitaxial Growth Process Parameters on Layer Characteristics and Device Performance in Si-passivated Ge pMOSFETs. ECS Transactions, 2009, 19, 183-194.                                                                                           | 0.3 | 13        |
| 107 | Thermal and Plasma Enhanced Atomic Layer Deposition of Al[sub 2]O[sub 3] on GaAs Substrates.<br>Journal of the Electrochemical Society, 2009, 156, H255.                                                                                                              | 1.3 | 17        |
| 108 | Ballistic current in metal-oxide-semiconductor field-effect transistors: The role of device topology.<br>Journal of Applied Physics, 2009, 106, 053702.                                                                                                               | 1.1 | 2         |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | High-Hole-Mobility Silicon Germanium on Insulator Substrates with High Crystalline Quality Obtained<br>by the Germanium Condensation Technique. Journal of the Electrochemical Society, 2009, 156, H208. | 1.3 | 30        |
| 110 | Implantation, Diffusion, Activation, and Recrystallization of Gallium Implanted in Preamorphized and Crystalline Germanium. Electrochemical and Solid-State Letters, 2009, 12, H417.                     | 2.2 | 25        |
| 111 | H[sub 2]O- and O[sub 3]-Based Atomic Layer Deposition of High-κ Dielectric Films on GeO[sub 2]<br>Passivation Layers. Journal of the Electrochemical Society, 2009, 156, G163.                           | 1.3 | 31        |
| 112 | Quantification of Drain Extension Leakage in a Scaled Bulk Germanium PMOS Technology. IEEE<br>Transactions on Electron Devices, 2009, 56, 3115-3122.                                                     | 1.6 | 29        |
| 113 | Molecular beam epitaxy passivation studies of Ge and Ill–V semiconductors for advanced CMOS.<br>Microelectronic Engineering, 2009, 86, 1592-1595.                                                        | 1.1 | 17        |
| 114 | Adsorption of molecular oxygen on the reconstructed β2(2×4)-GaAs(001) surface: A first-principles<br>study. Surface Science, 2009, 603, 203-208.                                                         | 0.8 | 33        |
| 115 | Interfaces of high-k dielectrics on GaAs: Their common features and the relationship with Fermi level pinning (Invited Paper). Microelectronic Engineering, 2009, 86, 1529-1535.                         | 1.1 | 49        |
| 116 | A first-principles study of the structural and electronic properties of Ill–V/thermal oxide interfaces.<br>Microelectronic Engineering, 2009, 86, 1747-1750.                                             | 1.1 | 18        |
| 117 | Electrical study of sulfur passivated In0.53Ga0.47As MOS capacitor and transistor with ALD Al2O3 as gate insulator. Microelectronic Engineering, 2009, 86, 1554-1557.                                    | 1.1 | 98        |
| 118 | Electronic properties of Ge dangling bond centers at Si1â^'xGex/SiO2 interfaces. Applied Physics Letters, 2009, 95, 222106.                                                                              | 1.5 | 17        |
| 119 | First-principles study of the electronic properties of Ge dangling bonds at (100)Si1â^'xGex/SiO2<br>interfaces. Applied Physics Letters, 2009, 95, .                                                     | 1.5 | 10        |
| 120 | Electrical Properties of III-V/Oxide Interfaces. ECS Transactions, 2009, 19, 375-386.                                                                                                                    | 0.3 | 68        |
| 121 | GaAs on Ge for CMOS. Thin Solid Films, 2008, 517, 148-151.                                                                                                                                               | 0.8 | 29        |
| 122 | General 2D SchrĶdinger-Poisson solver with open boundary conditions for nano-scale CMOS<br>transistors. Journal of Computational Electronics, 2008, 7, 475-484.                                          | 1.3 | 3         |
| 123 | On the characterisation of grown-in defects in Czochralski-grown Si and Ge. Journal of Materials<br>Science: Materials in Electronics, 2008, 19, 24-31.                                                  | 1.1 | 6         |
| 124 | Device assessment of the electrical activity of threading dislocations in strained Ge epitaxial layers.<br>Materials Science in Semiconductor Processing, 2008, 11, 364-367.                             | 1.9 | 7         |
| 125 | Electronic properties of (100)Ge/Ge(Hf)O2 interfaces: A first-principles study. Surface Science, 2008, 602, L25-L28.                                                                                     | 0.8 | 38        |
| 126 | High Ge content SGOI substrates obtained by the Ge condensation technique: A template for growth of strained epitaxial Ge. Thin Solid Films, 2008, 517, 23-26.                                           | 0.8 | 27        |

| #   | Article                                                                                                                                                                                     | IF      | CITATIONS   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|
| 127 | Benefits and side effects of high temperature anneal used to reduce threading dislocation defects in epitaxial Ge layers on Si substrates. Thin Solid Films, 2008, 517, 172-177.            | 0.8     | 29          |
| 128 | Influence of passivating interlayer on Ge/HfO2 and Ge/Al2O3 interface band diagrams. Materials Science in Semiconductor Processing, 2008, 11, 230-235.                                      | 1.9     | 7           |
| 129 | Shallow boron implantations in Ge and the role of the pre-amorphization depth. Materials Science in Semiconductor Processing, 2008, 11, 368-371.                                            | 1.9     | 7           |
| 130 | Accurate carrier profiling of n-type GaAs junctions. Materials Science in Semiconductor Processing, 2008, 11, 259-266.                                                                      | 1.9     | 4           |
| 131 | On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility<br>Semiconductor Substrates. IEEE Transactions on Electron Devices, 2008, 55, 547-556.                | 1.6     | 339         |
| 132 | Impact of Donor Concentration, Electric Field, and Temperature Effects on the Leakage Current in Germanium p \$+/\$n Junctions. IEEE Transactions on Electron Devices, 2008, 55, 2287-2296. | 1.6     | 69          |
| 133 | Ge dangling bonds at the (100)Ge/GeO2 interface and the viscoelastic properties of GeO2. Applied Physics Letters, 2008, 93, .                                                               | 1.5     | 103         |
| 134 | Applicability of Charge Pumping on Germanium MOSFETs. IEEE Electron Device Letters, 2008, 29, 1364-1366.                                                                                    | 2.2     | 8           |
| 135 | Characterization of Threading Dislocations in Thin Germanium Layers by Defect Etching: Toward Chromium and HF-Free Solution. Journal of the Electrochemical Society, 2008, 155, H677.       | 1.3     | 20          |
| 136 | Processing Factors Impacting the Leakage Current and Flicker Noise of Germanium p[sup +]-n Junctions on Silicon Substrates. Journal of the Electrochemical Society, 2008, 155, H145.        | 1.3     | 9           |
| 137 | First-principles study of the structural and electronic properties of (100)Geâ^•Ge(M)O2 interfaces (M=Al,) Tj ETQ                                                                           | 9110.78 | 4314 rgBT / |
| 138 | Capacitance–Voltage Characterization of GaAs–Oxide Interfaces. Journal of the Electrochemical<br>Society, 2008, 155, H945.                                                                  | 1.3     | 55          |
| 139 | Atomic Layer Deposition of Hafnium Oxide on Ge and GaAs Substrates: Precursors and Surface<br>Preparation. Journal of the Electrochemical Society, 2008, 155, H937.                         | 1.3     | 35          |
| 140 | Capacitance-voltage characterization of GaAs–Al2O3 interfaces. Applied Physics Letters, 2008, 93, 183504.                                                                                   | 1.5     | 109         |
| 141 | Structure and interface bonding of GeO2â^•Geâ^•In0.15Ga0.85As heterostructures. Applied Physics Letters, 2008, 93, 133504.                                                                  | 1.5     | 9           |
| 142 | Germanium MOSFET Devices: Advances in Materials Understanding, Process Development, and<br>Electrical Performance. Journal of the Electrochemical Society, 2008, 155, H552.                 | 1.3     | 230         |
| 143 | Low temperature mobility in hafnium-oxide gated germanium p-channel metal-oxide-semiconductor field-effect transistors. Applied Physics Letters, 2007, 91, 263512.                          | 1.5     | 6           |
| 144 | Surface recombination velocity in GaAs and In0.15Ga0.85As thin films. Applied Physics Letters, 2007, 90, 134102.                                                                            | 1.5     | 16          |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Electrical Passivation of the (100)Ge Surface by Its Thermal Oxide. ECS Transactions, 2007, 11, 451-459.                                                                         | 0.3 | 6         |
| 146 | First-Principles Investigation of (100)Ge/Ge(Hf)O2 Interfaces. ECS Transactions, 2007, 11, 471-478.                                                                              | 0.3 | 4         |
| 147 | Origin and Suppression of Junction Leakage in Germanium-On-Silicon Structures. ECS Transactions, 2007, 6, 31-39.                                                                 | 0.3 | 0         |
| 148 | High Mobility Strained Ge pMOSFETs With High-\$kappa\$ /Metal Gate. IEEE Electron Device Letters, 2007, 28, 825-827.                                                             | 2.2 | 40        |
| 149 | H2S exposure of a (100)Ge surface: Evidences for a (2×1) electrically passivated surface. Applied Physics<br>Letters, 2007, 90, 222105.                                          | 1.5 | 32        |
| 150 | Germanium: The Past and Possibly a Future Material for Microelectronics. ECS Transactions, 2007, 11, 479-493.                                                                    | 0.3 | 33        |
| 151 | Characteristic trapping lifetime and capacitance-voltage measurements of GaAs metal-oxide-semiconductor structures. Applied Physics Letters, 2007, 91, 133510.                   | 1.5 | 94        |
| 152 | Germanium FETs and capacitors with rare earth CeO2/HfO2 gates. Solid-State Electronics, 2007, 51, 1508-1514.                                                                     | 0.8 | 21        |
| 153 | Electrical and reliability characterization of metal-gate/HfO2/Ge FET's with Si passivation.<br>Microelectronic Engineering, 2007, 84, 2067-2070.                                | 1.1 | 35        |
| 154 | Comparing GaAs and In0.15Ga0.85As as channel material for alternative substrate CMOS.<br>Microelectronic Engineering, 2007, 84, 2154-2157.                                       | 1.1 | 5         |
| 155 | Experimental and theoretical study of Ge surface passivation. Microelectronic Engineering, 2007, 84, 2267-2273.                                                                  | 1.1 | 19        |
| 156 | Germanium MOSFETs With \$hbox{CeO}_{2}/hbox{HfO}_{2}/ hbox{TiN}\$ Gate Stacks. IEEE<br>Transactions on Electron Devices, 2007, 54, 1425-1430.                                    | 1.6 | 37        |
| 157 | High-Performance Deep Submicron Ge pMOSFETs With Halo Implants. IEEE Transactions on Electron<br>Devices, 2007, 54, 2503-2511.                                                   | 1.6 | 88        |
| 158 | Lifetime and leakage current considerations in metal-doped germanium. Journal of Materials Science:<br>Materials in Electronics, 2007, 18, 799-804.                              | 1.1 | 16        |
| 159 | Determining weak Fermi-level pinning in MOS devices by conductance and capacitance analysis and application to GaAs MOS devices. Solid-State Electronics, 2007, 51, 1101-1108.   | 0.8 | 18        |
| 160 | Study of the Junction Depth Effect on Ballistic Current Using the Subband Decomposition Method. , 2007, , 205-208.                                                               |     | 1         |
| 161 | New interface state density extraction method applicable to peaked and high-density distributions for<br>Ge MOSFET development. IEEE Electron Device Letters, 2006, 27, 405-408. | 2.2 | 69        |
| 162 | HfO2 as gate dielectric on Ge: Interfaces and deposition techniques. Materials Science and Engineering<br>B: Solid-State Materials for Advanced Technology, 2006, 135, 256-260.  | 1.7 | 68        |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Thin epitaxial Si films as a passivation method for Ge(100): Influence of deposition temperature on Ge<br>surface segregation and the high-k/Ge interface quality. Materials Science in Semiconductor<br>Processing, 2006, 9, 679-684. | 1.9 | 52        |
| 164 | Impact of germanium surface passivation on the leakage current of shallow planar p–n junctions.<br>Materials Science in Semiconductor Processing, 2006, 9, 716-720.                                                                    | 1.9 | 18        |
| 165 | A deep-level transient spectroscopy study of transition metals in n-type germanium. Materials Science<br>in Semiconductor Processing, 2006, 9, 559-563.                                                                                | 1.9 | 25        |
| 166 | Interface characterization of Si-passivated HfO2 germanium capacitors using DLTS measurements.<br>Materials Science in Semiconductor Processing, 2006, 9, 749-752.                                                                     | 1.9 | 4         |
| 167 | Ion-implantation issues in the formation of shallow junctions in germanium. Materials Science in Semiconductor Processing, 2006, 9, 634-639.                                                                                           | 1.9 | 108       |
| 168 | Ge substrates made by Ge-condensation technique: Challenges and current understanding. Materials<br>Science in Semiconductor Processing, 2006, 9, 449-453.                                                                             | 1.9 | 19        |
| 169 | Epitaxy solutions for Ge MOS technology. Thin Solid Films, 2006, 508, 292-296.                                                                                                                                                         | 0.8 | 18        |
| 170 | Study of CVD high-k gate oxides on high-mobility Ge and Ge/Si substrates. Thin Solid Films, 2006, 508, 1-5.                                                                                                                            | 0.8 | 18        |
| 171 | Electrical Properties of Atomic-Beam Deposited GeO[sub 1â^'x]N[sub x]â^•HfO[sub 2] Gate Stacks on Ge.<br>Journal of the Electrochemical Society, 2006, 153, G1112.                                                                     | 1.3 | 15        |
| 172 | Shallow Junction Ion Implantation in Ge and Associated Defect Control. Journal of the Electrochemical Society, 2006, 153, G229.                                                                                                        | 1.3 | 72        |
| 173 | Effect of hafnium germanate formation on the interface of HfO2/germanium metal oxide semiconductor devices. Applied Physics Letters, 2006, 88, 141904.                                                                                 | 1.5 | 67        |
| 174 | Diffusion, activation, and regrowth behavior of high dose P implants in Ge. Applied Physics Letters, 2006, 88, 162118.                                                                                                                 | 1.5 | 91        |
| 175 | Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates. Microelectronic Engineering, 2005, 80, 26-29.                                            | 1.1 | 92        |
| 176 | The future of high-K on pure germanium and its importance for Ge CMOS. Materials Science in Semiconductor Processing, 2005, 8, 203-207.                                                                                                | 1.9 | 18        |
| 177 | Diffusion, activation, and recrystallization of boron implanted in preamorphized and crystalline germanium. Applied Physics Letters, 2005, 87, 172109.                                                                                 | 1.5 | 130       |
| 178 | Electrical characteristics of Ge/GeOx(N)/HfO2 gate stacks. Journal of Non-Crystalline Solids, 2005, 351, 1902-1905.                                                                                                                    | 1.5 | 24        |
| 179 | Deposition of HfO2 on germanium and the impact of surface pretreatments. Applied Physics Letters, 2004, 85, 3824-3826.                                                                                                                 | 1.5 | 104       |
| 180 | Integration of Cu and low-k dielectrics: effect of hard mask and dry etch on electrical performance of damascene structures. Microelectronic Engineering, 2001, 55, 277-283.                                                           | 1.1 | 15        |

| #   | Article                                                                                                                                                                                                                        | IF              | CITATIONS     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 181 | A Static Model for Scratches Generated during Aluminum Chemical-Mechanical Polishing Process:<br>Orbital Technology. Japanese Journal of Applied Physics, 1999, 38, 1932-1938.                                                 | 0.8             | 22            |
| 182 | Advanced cleaning for the growth of ultrathin gate oxide. Microelectronic Engineering, 1999, 48, 199-206.                                                                                                                      | 1.1             | 8             |
| 183 | Cost-effective cleaning and high-quality thin gate oxides. IBM Journal of Research and Development, 1999, 43, 339-350.                                                                                                         | 3.2             | 43            |
| 184 | A Wet chemical Method for the Determination of Thickness of SiO2 Layers below the Nanometer Level.<br>Journal of the Electrochemical Society, 1999, 146, 1873-1878.                                                            | 1.3             | 12            |
| 185 | Impact of Organic Contamination on Thin Gate Oxide Quality. Japanese Journal of Applied Physics, 1998, 37, 4649-4655.                                                                                                          | 0.8             | 49            |
| 186 | Light Point Defect Generation during Photoresist Spin Coating: Characterization and Controlling Parameters. Journal of the Electrochemical Society, 1997, 144, 3608-3613.                                                      | 1.3             | 0             |
| 187 | Point of Use HF Purification for Silicon Surface Preparation by Ion Exchange. Journal of the Electrochemical Society, 1997, 144, 2189-2196.                                                                                    | 1.3             | 14            |
| 188 | Impact of the Electrochemical Properties of Silicon Wafer Surfaces on Copper Outplating from HF Solutions. Journal of the Electrochemical Society, 1996, 143, 3323-3327.                                                       | 1.3             | 35            |
| 189 | Surface passivation and microroughness of (100) silicon etched in aqueous hydrogen halide (HF, HCl,) Tj ETQq1                                                                                                                  | 1 0.7843<br>1.1 | 14 rgBT /Over |
| 190 | Wear-out of ultra-thin gate oxides during high-field electron tunnelling. Semiconductor Science and Technology, 1995, 10, 753-758.                                                                                             | 1.0             | 30            |
| 191 | H2O2Decomposition and Its Impact on Silicon Surface Roughening and Gate Oxide Integrity. Japanese<br>Journal of Applied Physics, 1995, 34, 727-731.                                                                            | 0.8             | 36            |
| 192 | Sensitive Light Scattering as a Semiquantitative Method for Studying Photoresist Stripping. Journal of the Electrochemical Society, 1995, 142, 211-216.                                                                        | 1.3             | 26            |
| 193 | Cleaning technology for improved gate oxide integrity. Microelectronic Engineering, 1993, 22, 21-28.                                                                                                                           | 1.1             | 17            |
| 194 | Quantitative study of background signals from crater edges and surroundings in depth profiling of small areas with secondary ion mass spectrometry. Surface and Interface Analysis, 1993, 20, 206-214.                         | 0.8             | 4             |
| 195 | The Relationship of the Silicon Surface Roughness and Gate Oxide Integrity in NH4OH/H2O2Mixtures.<br>Japanese Journal of Applied Physics, 1992, 31, L1514-L1517.                                                               | 0.8             | 36            |
| 196 | Migration of Si in molecularâ€beam epitaxial growth of δâ€doped GaAs and Al0.25Ga0.75As. Journal of<br>Applied Physics, 1990, 68, 3766-3768.                                                                                   | 1.1             | 19            |
| 197 | Mass and energy dependence of depth resolution in secondaryâ€ion mass spectrometry experiments with<br>iodine, oxygen, and cesium beams on AlGaAs/GaAs multilayer structures. Applied Physics Letters, 1989,<br>54, 1531-1533. | 1.5             | 28            |
| 198 | Characterization of the TiWâ€GaAs interface after rapid thermal annealing. Journal of Applied Physics,<br>1989, 66, 4775-4779.                                                                                                 | 1.1             | 5             |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Rapid thermal annealing of sputtered TiW on GaAs. Applied Surface Science, 1989, 38, 540.                                                                                                                                                           | 3.1 | 0         |
| 200 | Determination of the angle of incidence in a Cameca IMS-4f SIMS instrument. Surface and Interface Analysis, 1989, 14, 739-743.                                                                                                                      | 0.8 | 47        |
| 201 | Investigation of cross-contamination during Si-implantion in GaAs with SIMS. Surface and Interface Analysis, 1988, 12, 339-343.                                                                                                                     | 0.8 | 3         |
| 202 | S-Passivation of the Ge Gate Stack Using (NH <sub>4</sub> ) <sub>2</sub> S. Solid<br>State Phenomena, 0, 187, 23-26.                                                                                                                                | 0.3 | 1         |
| 203 | "To Spin or Not to Spin?â€â€"Is Spinâ€Coating the Ideal Technique for Preâ€Deposition of Sodium Fluoride<br>for CIGS Rear Surface Passivated Ultrathin Solar Cells?. Physica Status Solidi (A) Applications and<br>Materials Science, 0, , 2100830. | 0.8 | 0         |