Demetra Pitta-Pantazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6979525/publications.pdf Version: 2024-02-01

		623734	526287
33	841	14	27
papers	citations	h-index	g-index
33 all docs	33 docs citations	33 times ranked	470 citing authors

#	Article	IF	CITATIONS
1	Drawing on a Theoretical Model to Study Students' Understandings of Fractions. Educational Studies in Mathematics, 2007, 64, 293-316.	2.8	173
2	An empirical taxonomy of problem posing processes. Zentralblatt Für Didaktik Der Mathematik, 2005, 37, 149-158.	0.4	103
3	Connecting mathematical creativity to mathematical ability. ZDM - International Journal on Mathematics Education, 2013, 45, 167-181.	2.2	97
4	Creativity and mathematics education: the state of the art. ZDM - International Journal on Mathematics Education, 2013, 45, 159-166.	2.2	95
5	Proofs through Exploration in Dynamic Geometry Environments. International Journal of Science and Mathematics Education, 2004, 2, 339-352.	2.5	41
6	Teachers' views on creativity in mathematics education: an international survey. ZDM - International Journal on Mathematics Education, 2013, 45, 309-324.	2.2	41
7	Spatial visualizers, object visualizers and verbalizers: their mathematical creative abilities. ZDM - International Journal on Mathematics Education, 2013, 45, 199-213.	2.2	33
8	Cognitive styles, dynamic geometry and measurement performance. Educational Studies in Mathematics, 2009, 70, 5-26.	2.8	23
9	Secondary school students' levels of understanding in computing exponents. Journal of Mathematical Behavior, 2007, 26, 301-311.	0.9	22
10	The structure of prospective kindergarten teachers' proportional reasoning. Journal of Mathematics Teacher Education, 2011, 14, 149-169.	1.8	22
11	A Model of Mathematical Giftedness: Integrating Natural, Creative, and Mathematical Abilities. Canadian Journal of Science, Mathematics and Technology Education, 2011, 11, 39-54.	1.0	21
12	Prospective teachers' understanding of the multiplicative part-whole relationship of fraction. Educational Studies in Mathematics, 2016, 92, 129-146.	2.8	18
13	Mathematical Creativity: Product, Person, Process and Press. ICME-13 Monographs, 2018, , 27-53.	1.0	18
14	Spatial versus object visualisation: The case of mathematical understanding in three-dimensional arrays of cubes and nets. International Journal of Educational Research, 2010, 49, 102-114.	2.2	17
15	Examining early algebraic thinking: insights from empirical data. Educational Studies in Mathematics, 2018, 98, 57-76.	2.8	14
16	Examining number sense and algebraic reasoning through cognitive styles. Educational Studies in Mathematics, 2013, 83, 205-223.	2.8	13
17	Prospective teachers' attention on geometrical tasks. Educational Studies in Mathematics, 2014, 86, 1-18.	2.8	13
18	A Longitudinal Study Revisiting the Notion of Early Number Sense: Algebraic Arithmetic AS a Catalyst for Number Sense Development. Mathematical Thinking and Learning, 2018, 20, 222-247.	1.2	13

#	Article	IF	CITATIONS
19	Young Students' Functional Thinking Modes: The Relation Between Recursive Patterning, Covariational Thinking, and Correspondence Relations. Journal for Research in Mathematics Education, 2020, 51, 631-674.	1.8	11
20	Reflective, systemic and analytic thinking in real numbers. Educational Studies in Mathematics, 2013, 82, 5-22.	2.8	10
21	What Have We Learned About Giftedness and Creativity? An Overview of a Five Years Journey. Advances in Mathematics Education, 2017, , 201-223.	0.2	6
22	Different Types of Algebraic Thinking: an Empirical Study Focusing on Middle School Students. International Journal of Science and Mathematics Education, 2020, 18, 965-984.	2.5	6
23	Cognitive styles, task presentation mode and mathematical performance. Research in Mathematics Education, 2009, 11, 131-148.	1.2	5
24	Hierarchical Levels of Abilities that Constitute Fraction Understanding at Elementary School. International Journal of Science and Mathematics Education, 2016, 14, 757-776.	2.5	5
25	Parsing the notion of algebraic thinking within a cognitive perspective. Educational Psychology, 2017, 37, 1186-1205.	2.7	4
26	The impact of two different types of instructional tasks on students' development of early algebraic thinking (<i>El impacto de dos tipos diferentes de tareas instruccionales en el desarrollo del) Tj ETQq0 0 0 rgBT</i>	/Oværslock	10∄f 50 457
27	Mathematics Classroom Assessment: A Framework for Designing Assessment Tasks and Interpreting Students' Responses. European Journal of Investigation in Health, Psychology and Education, 2021, 11, 1088-1106.	1.9	3
28	Primary school students' structure and levels of abilities in transformational geometry. Revista Latinoamericana De Investigacion En Matematica Educativa, 2014, 17, 149-164.	0.1	3
29	Number Teaching and Learning. , 2020, , 645-654.		3
30	Mathematical imagination, knowledge and mindset. ZDM - International Journal on Mathematics Education, 0, , 1.	2.2	2
31	Nurturing mathematical creativity for the concept of arithmetic mean in a technologically enhanced †personalised mathematics and mathematics inquiry' learning environment. ZDM - International Journal on Mathematics Education, 2022, 54, 51-66.	2.2	2
32	CERME7 Working Group 7: Mathematical potential, creativity and talent. Research in Mathematics Education, 2012, 14, 197-198.	1.2	1
33	Number Teaching and Learning. , 2018, , 1-9.		0