David Raciti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6979469/publications.pdf

Version: 2024-02-01

		430442	552369
29	1,984	18	26
papers	citations	h-index	g-index
30	30	30	3350
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science, 2019, 363, 870-874.	6.0	384
2	Highly Dense Cu Nanowires for Low-Overpotential CO ₂ Reduction. Nano Letters, 2015, 15, 6829-6835.	4.5	354
3	Recent Advances in CO ₂ Reduction Electrocatalysis on Copper. ACS Energy Letters, 2018, 3, 1545-1556.	8.8	280
4	Low-Overpotential Electroreduction of Carbon Monoxide Using Copper Nanowires. ACS Catalysis, 2017, 7, 4467-4472.	5.5	137
5	Copper Nanocubes for CO ₂ Reduction in Gas Diffusion Electrodes. Nano Letters, 2019, 19, 8461-8468.	4.5	135
6	Mechanistic Insights for Low-Overpotential Electroreduction of CO ₂ to CO on Copper Nanowires. ACS Catalysis, 2017, 7, 8578-8587.	5.5	106
7	Local pH Effect in the CO ₂ Reduction Reaction on High-Surface-Area Copper Electrocatalysts. Journal of the Electrochemical Society, 2018, 165, F799-F804.	1.3	90
8	Mass transport modelling for the electroreduction of CO ₂ on Cu nanowires. Nanotechnology, 2018, 29, 044001.	1.3	82
9	Mass transfer effects in CO ₂ reduction on Cu nanowire electrocatalysts. Catalysis Science and Technology, 2018, 8, 2364-2369.	2.1	54
10	Electro-Oxidation of Ethanol Using Pt ₃ Sn Alloy Nanoparticles. ACS Catalysis, 2018, 8, 10931-10937.	5.5	53
11	Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching. Journal of the American Chemical Society, 2016, 138, 6332-6335.	6.6	49
12	Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction. Nano Energy, 2016, 20, 202-211.	8.2	38
13	High-Flux CO Reduction Enabled by Three-Dimensional Nanostructured Copper Electrodes. ACS Catalysis, 2018, 8, 5657-5663.	5.5	35
14	Endothermic reaction at room temperature enabled by deep-ultraviolet plasmons. Nature Materials, 2021, 20, 346-352.	13.3	31
15	Three-Dimensional Hierarchical Copper-Based Nanostructures as Advanced Electrocatalysts for CO ₂ Reduction. ACS Applied Energy Materials, 2018, 1, 2392-2398.	2.5	27
16	Electrocatalytic Oxidation of Glycerol on Platinum. Journal of Physical Chemistry C, 2019, 123, 426-432.	1.5	26
17	High-Aspect-Ratio Ag Nanowire Mat Electrodes for Electrochemical CO Production from CO ₂ . ACS Catalysis, 2021, 11, 11945-11959.	5. 5	20
18	Improved Prediction of Nanoalloy Structures by the Explicit Inclusion of Adsorbates in Cluster Expansions. Journal of Physical Chemistry C, 2018, 122, 18040-18047.	1.5	19

#	Article	IF	Citations
19	Electrochemical alternative to Fischer–Tropsch. Nature Catalysis, 2018, 1, 741-742.	16.1	17
20	Macromolecular Brushes as Stabilizers of Hydrophobic Solute Nanoparticles. Molecular Pharmaceutics, 2016, 13, 1855-1865.	2.3	13
21	Surface Hydride Formation on $Cu(111)$ and Its Decomposition to Form H $<$ sub $>$ 2 $<$ /sub $>$ in Acid Electrolytes. Journal of Physical Chemistry Letters, 2021, 12, 10936-10941.	2.1	11
22	Comparative Studies of Ethanol and Ethylene Glycol Oxidation on Platinum Electrocatalysts. Topics in Catalysis, 2018, 61, 1035-1042.	1.3	9
23	Potentiometric Rotating Ring Disk Electrode Study of Interfacial pH during CO ₂ Reduction and H ₂ Generation in Neutral and Weakly Acidic Media. Journal of Physical Chemistry C, 2022, 126, 7456-7467.	1.5	7
24	Recent Development of Platinum-Based Nanocatalysts for Oxygen Reduction Electrocatalysis. Nanostructure Science and Technology, 2016, , 253-280.	0.1	2
25	H-Cell Vs Gas Diffusion Electrolyzer for Evaluating Intrinsic Activity of Nanocatalysts for Electrochemical CO ₂ Reduction. ECS Meeting Abstracts, 2019, MA2019-02, 1072-1072.	0.0	1
26	Prolonged culture in aerobic environments alters Escherichia coli H 2 production capacity. Engineering Reports, 2020, 2, e12161.	0.9	0
27	Operando Transmission Electron Microscopy of Catalyst Decoking Activated by Ultraviolet Surface Plasmons. Microscopy and Microanalysis, 2020, 26, 1698-1699.	0.2	0
28	In-Operando characterization of Electrochemical Interfaces Via Shiners: Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy. ECS Meeting Abstracts, 2020, MA2020-01, 1152-1152.	0.0	0
29	Compressive Stress and Charge Redistribution during CO Adsorption onto Pt. Journal of Physical Chemistry C, 2022, 126, 4446-4457.	1.5	0