Frank Weinhold

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6979280/frank-weinhold-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

49,885 67 251 223 h-index g-index citations papers 6.4 53,336 7.72 277 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
251	Anti-Electrostatic Pi-Hole Bonding: How Covalency Conquers Coulombics <i>Molecules</i> , 2022 , 27,	4.8	1
250	Chlorine dioxide: An exception that proves the rules of localized chemical bonding <i>Journal of Chemical Physics</i> , 2022 , 156, 124303	3.9	2
249	6 Natural bond orbital theory: Discovering chemistry with NBO7 2021 , 129-156		4
248	Comment on "Superposition of Waves or Densities: Which Is the Nature of Chemical Resonance?" [J. Comput. Chem. 2021, 42, 412-417]. <i>Journal of Computational Chemistry</i> , 2021 , 42, 1338-1340	3.5	2
247	Time-Conjugation in a Unified Quantum Theory for Hermitian and Non-Hermitian Electronic Systems under Time-Reversal Symmetry. <i>Symmetry</i> , 2021 , 13, 808	2.7	1
246	Sulfur Tetrahydride and Allied Superhydride Clusters: When Resonance Takes Precedence. <i>Chemistry - A European Journal</i> , 2021 , 27, 6748-6759	4.8	
245	Pauling's Conceptions of Hybridization and Resonance in Modern Quantum Chemistry. <i>Molecules</i> , 2021 , 26,	4.8	3
244	Substituted -Benzynes: Properties of the Triple Bond. <i>Journal of Organic Chemistry</i> , 2020 , 85, 9905-9914	14.2	2
243	NBO/NRT Two-State Theory of Bond-Shift Spectral Excitation. <i>Molecules</i> , 2020 , 25,	4.8	5
242	NBO 7.0: New vistas in localized and delocalized chemical bonding theory. <i>Journal of Computational Chemistry</i> , 2019 , 40, 2234-2241	3.5	85
241	What Is the Nature of Supramolecular Bonding? Comprehensive NBO/NRT Picture of Halogen and Pnicogen Bonding in RPHIFFI Complexes (R = CH, OH, CF, CN, NO). <i>Molecules</i> , 2019 , 24,	4.8	12
240	Efficient optimization of natural resonance theory weightings and bond orders by gram-based convex programming. <i>Journal of Computational Chemistry</i> , 2019 , 40, 2028-2035	3.5	45
239	Resonance Theory Reboot. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4156-4166	16.4	26
238	To Be or Not to Be: Demystifying the 2nd-Quantized Picture of Complex Electronic Configuration Patterns in Chemistry with Natural Poly-Electron Population Analysis. <i>Journal of Computational Chemistry</i> , 2019 , 40, 1509-1520	3.5	5
237	Comment on "Observation of alkaline earth complexes M(CO) (M = Ca, Sr, or Ba) that mimic transition metals". <i>Science</i> , 2019 , 365,	33.3	25
236	Nine questions on energy decomposition analysis. <i>Journal of Computational Chemistry</i> , 2019 , 40, 2248-2	!2 ₃ 8 3	70
235	Resonance Natural Bond Orbitals: Efficient Semilocalized Orbitals for Computing and Visualizing Reactive Chemical Processes. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 916-921	6.4	8

(2016-2018)

234	Natural Bond Orbital Theory of Pseudo-Jahn-Teller Effects. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 4490-4498	2.8	7
233	Theoretical Prediction of Robust Second-Row Oxyanion Clusters in the Metastable Domain of Antielectrostatic Hydrogen Bonding. <i>Inorganic Chemistry</i> , 2018 , 57, 2035-2044	5.1	31
232	The role of hyperconjugation in the unusual conformation of thymine: A natural bond orbital analysis. <i>Computational and Theoretical Chemistry</i> , 2018 , 1130, 58-62	2	6
231	Quantitative Theoretical Predictions and Qualitative Bonding Analysis of the Divinylborinium System and Its Al, Ga, In, and Tl Congeners. <i>Inorganic Chemistry</i> , 2018 , 57, 7851-7859	5.1	1
230	Natural resonance theory of chemical reactivity, with illustrative application to intramolecular Claisen rearrangement. <i>Tetrahedron</i> , 2018 , 74, 4799-4804	2.4	5
229	Comment on "Natural Bond Orbitals and the Nature of the Hydrogen Bond". <i>Journal of Physical Chemistry A</i> , 2018 , 122, 724-732	2.8	26
228	Efficient evaluation of poly-electron populations in natural bond orbital analysis. <i>Chemical Physics Letters</i> , 2018 , 711, 23-26	2.5	7
227	Polyion Covalency: Exotic Species from the Unexplored World of Electrostatically Shielded Molecular Ion Chemistry. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14577-14581	16.4	21
226	Why Do Cumulene Ketones Kink?. <i>Journal of Organic Chemistry</i> , 2017 , 82, 12238-12245	4.2	9
225	Polyion Covalency: Exotic Species from the Unexplored World of Electrostatically Shielded Molecular Ion Chemistry. <i>Angewandte Chemie</i> , 2017 , 129, 14769-14773	3.6	7
224	Predicting the Ionic Product of Water. Scientific Reports, 2017, 7, 10244	4.9	23
223	Appendix A: What's under the Hood? 2016 , 297-299		
222	Appendix E: Atomic Units (a.u.) and Conversion Factors 2016 , 307-308		
221	Appendix B: Orbital Graphics: The NBOView Orbital Plotter 2016 , 300-301		
220	Appendix C: Digging at the Details 2016 , 302-303		
219	Excited State Chemistry 2016 , 252-296		
218	Electrons in Atoms 2016 , 10-33		
217	Atoms in Molecules 2016 , 34-50		

216 Hybrids and Bonds in Molecules **2016**, 51-91

215	Resonance Delocalization Corrections 2016 , 92-134		1
214	Steric and Electrostatic Effects 2016 , 135-154		
213	Nuclear and Electronic Spin Effects 2016 , 155-175		
212	Coordination and Hyperbonding 2016 , 176-208		
211	Intermolecular Interactions 2016 , 209-230		1
21 0	Transition State Species and Chemical Reactions 2016 , 231-251		
209	18-electron rule and the 3c/4e hyperbonding saturation limit. <i>Journal of Computational Chemistry</i> , 2016 , 37, 237-41	3.5	14
208	Spectroscopic Evidence for Clusters of Like-Charged Ions in Ionic Liquids Stabilized by Cooperative Hydrogen Bonding. <i>ChemPhysChem</i> , 2016 , 17, 447-447	3.2	1
207	What is NBO analysis and how is it useful?. <i>International Reviews in Physical Chemistry</i> , 2016 , 35, 399-44	10 ₇	375
206	3c/4e [small sigma, Greek, circumflex]-type long-bonding competes with Ebonding in noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I): a NBO/NRT perspective. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 8015-26	3.6	14
205	Insight into the Mechanism of the Michael Reaction. <i>ChemPhysChem</i> , 2016 , 17, 2022-34	3.2	19
204	Spectroscopic Evidence for Clusters of Like-Charged Ions in Ionic Liquids Stabilized by Cooperative Hydrogen Bonding. <i>ChemPhysChem</i> , 2016 , 17, 458-62	3.2	100
203	Appendix D: What if Something goes Wrong? 2016 , 304-306		
202	Bonding Analysis of TM(cAAC)2 (TM = Cu, Ag, and Au) and the Importance of Reference State. Organometallics, 2015 , 34, 3442-3449	3.8	36
201	Rabbit ears concepts of water lone pairs: a reply to comments of Hiberty, Danovich, and Shaik. <i>Chemistry Education Research and Practice</i> , 2015 , 16, 694-696	2.1	4
200	Improved General Understanding of the Hydrogen-Bonding Phenomena: A Reply. <i>Angewandte Chemie</i> , 2015 , 127, 2636-2638	3.6	16
199	Resonance Character of Copper/Silver/Gold Bonding in Small Molecule???M-X (X=F, Cl, Br, CH3, CF3) Complexes. <i>ChemPhysChem</i> , 2015 , 16, 2424-31	3.2	18

(2012-2015)

198	Improved general understanding of the hydrogen-bonding phenomena: a reply. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2600-2	16.4	38
197	The NBO View of Chemical Bonding 2014 , 91-120		40
196	Rabbit-ears hybrids, VSEPR sterics, and other orbital anachronisms. <i>Chemistry Education Research and Practice</i> , 2014 , 15, 417-434	2.1	38
195	Anti-Electrostatic Hydrogen Bonds. <i>Angewandte Chemie</i> , 2014 , 126, 11396-11399	3.6	69
194	Anti-electrostatic hydrogen bonds. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 11214-7	16.4	146
193	Kinetics and mechanism of water cluster equilibria. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 7792-8	3.4	14
192	What is a hydrogen bond? Resonance covalency in the supramolecular domain. <i>Chemistry Education Research and Practice</i> , 2014 , 15, 276-285	2.1	82
191	Bay-type HIIIH "bonding" in cis-2-butene and related species: QTAIM versus NBO description. <i>Journal of Computational Chemistry</i> , 2014 , 35, 1499-508	3.5	54
190	Addendum: Anti-Electrostatic Hydrogen Bonds. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12992-12992	16.4	14
189	Addendum: Anti-Electrostatic Hydrogen Bonds. <i>Angewandte Chemie</i> , 2014 , 126, 13207-13207	3.6	11
188	Quantum Cluster Equilibrium. Letters in Mathematical Physics, 2014 , 77-96	0.2	6
187	NBO 6.0: natural bond orbital analysis program. <i>Journal of Computational Chemistry</i> , 2013 , 34, 1429-37	3.5	916
186	Natural bond-bond polarizability: a Hdkel-like electronic delocalization index. <i>Journal of Organic Chemistry</i> , 2013 , 78, 1844-50	4.2	6
185	Hyperconjugative interactions in permethylated siloxanes and ethers: the nature of the SiO bond. <i>Journal of the American Chemical Society</i> , 2013 , 135, 5762-7	16.4	75
184	3c/4e Eype long-bonding: a novel transitional motif toward the metallic delocalization limit. <i>Inorganic Chemistry</i> , 2013 , 52, 5154-66	5.1	40
183	Accurate structure and dynamics of the metal-site of paramagnetic metalloproteins from NMR parameters using natural bond orbitals. <i>Journal of the American Chemical Society</i> , 2012 , 134, 4670-82	16.4	17
182	Comments on L s It Time To Retire the Hybrid Atomic Orbital? **IJournal of Chemical Education, 2012 , 89, 570-572	2.4	20
181	Natural Bond Critical Point analysis: quantitative relationships between natural bond orbital-based and QTAIM-based topological descriptors of chemical bonding. <i>Journal of Computational Chemistry</i> , 2012 , 33, 2440-9	3.5	70

180	Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. <i>Journal of Computational Chemistry</i> , 2012 , 33, 2363-79	3.5	372
179	Natural bond orbital methods. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2012 , 2, 1-42	7.9	887
178	What is a hydrogen bond? Mutually consistent theoretical and experimental criteria for characterizing H-bonding interactions. <i>Molecular Physics</i> , 2012 , 110, 565-579	1.7	169
177	2012,		394
176	Natural Bond Orbitals and Lewis-Like Structures of Copper Blue Proteins 2011 , 77-89		1
175	The Nature of the Silicon Dxygen Bond. Organometallics, 2011 , 30, 5815-5824	3.8	110
174	Hyperfine-shifted 13C resonance assignments in an iron-sulfur protein with quantum chemical verification: aliphatic C-HIIIS 3-center-4-electron interactions. <i>Journal of the American Chemical Society</i> , 2011 , 133, 1310-6	16.4	28
173	Isotope-sensitive degenerate [1,3]-hydrogen migration versus competitive enol-keto tautomerization. <i>Chemistry - A European Journal</i> , 2009 , 15, 11815-9	4.8	7
172	Natural hybrid orbitals: Ab initio SCF and CI results for CO and NiCO. <i>International Journal of Quantum Chemistry</i> , 2009 , 18, 201-209	2.1	3
171	Remarks on the calculation of upper and lower limits to quantum-mechanical properties. <i>International Journal of Quantum Chemistry</i> , 2009 , 5, 721-728	2.1	5
170	Further Aspects of Thermodynamic Geometry 2008 , 421-463		
169	2008,		6
168	Characterization of the methoxy carbonyl radical formed via photolysis of methyl chloroformate at 193.3 nm. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 1762-70	2.8	8
167	Chemistry. High bond orders in metal-metal bonding. <i>Science</i> , 2007 , 316, 61-3	33.3	65
166	News from the Periodic Table: An Introduction to "Periodicity Symbols, Tables, and Models for Higher-Order Valency and Donor Acceptor Kinships". <i>Journal of Chemical Education</i> , 2007 , 84, 1145	2.4	21
165	Valence and extra-valence orbitals in main group and transition metal bonding. <i>Journal of Computational Chemistry</i> , 2007 , 28, 198-203	3.5	43
164	Radical hydrogen bonding: origin of stability of radical-molecule complexes. <i>Journal of Chemical Physics</i> , 2007 , 127, 164102	3.9	43
163	The ABCs of multiple bonding. <i>Science</i> , 2007 , 318, 746; author reply 746	33.3	3

(2002-2006)

162	Determination of the conformation of 2-hydroxy- and 2-aminobenzoic acid dimers using 13C NMR and density functional theory/natural bond order analysis: the central importance of the carboxylic acid carbon. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 8832-9	2.8	8
161	Origin of trans-bent geometries in maximally bonded transition metal and main group molecules. Journal of the American Chemical Society, 2006 , 128, 7335-45	16.4	90
160	Resonance bonding patterns of peroxide chemistry: cyclic three-center hyperbonding in "phosphadioxirane" intermediates. <i>Journal of the American Chemical Society</i> , 2006 , 128, 11850-9	16.4	19
159	Comments on Purser's Article: "Lewis Structures are Models for Predicting Molecular Structure, Not Electronic Structure". <i>Journal of Chemical Education</i> , 2005 , 82, 527	2.4	5
158	Resonance Character of Hydrogen-bonding Interactions in Water and Other H-bonded Species. <i>Advances in Protein Chemistry</i> , 2005 , 72, 121-55		50
157	Natural Bond Orbital Analysis of Photochemical Excitation, With Illustrative Applications to Vinoxy Radical. <i>Molecular and Supramolecular Photochemistry</i> , 2005 , 393-476		4
156	Blue-Shifted and Red-Shifted Hydrogen Bonds in Hypervalent Rare-Gas FRgHIIIY Sandwiches. Journal of Physical Chemistry A, 2004 , 108, 4720-4730	2.8	67
155	Supramolecular bonding 2003 , 579-709		
154	Rebuttal to the Bickelhaupt B aerends Case for Steric Repulsion Causing the Staggered Conformation of Ethane. <i>Angewandte Chemie</i> , 2003 , 115, 4320-4326	3.6	39
153	Rebuttal to the Bickelhaupt B aerends Case for Steric Repulsion Causing the Staggered Conformation of Ethane. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 4188-4194	16.4	145
152	Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. <i>Journal of the American Chemical Society</i> , 2003 , 125, 5973-87	16.4	644
151	Tests of quantum cluster equilibrium (QCE)-based computational methods for describing formic acid clustering. <i>Molecular Physics</i> , 2003 , 101, 1147-1153	1.7	8
150	Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective 2003,		1289
149	Die molekulare Zusammensetzung des fl\(\bar{B}\)sigen Schwefels. <i>Angewandte Chemie</i> , 2002 , 114, 3331-3335	3.6	2
148	Molecular composition of liquid sulfur. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 3199-202	16.4	21
147	Nuclear motion and Breit P auli corrections to the diamagnetism of atomic helium. <i>Journal of Chemical Physics</i> , 2002 , 117, 3243-3247	3.9	12
146	Quantum Cluster Equilibrium Theory of Liquids: Isotopically substituted QCE/3-21G Model Water. <i>Zeitschrift Fur Physikalische Chemie</i> , 2002 , 216,	3.1	19
145	Quantum chemical calculations on structural models of the catalytic site of chymotrypsin: comparison of calculated results with experimental data from NMR spectroscopy. <i>Journal of the American Chemical Society</i> 2002 , 124, 14373-81	16.4	23

144	Experimental and theoretical spin-spin coupling constants for [15N] formamide. <i>Molecular Physics</i> , 2002 , 100, 2807-2814	1.7	7
143	Trans-hydrogen-bond (h2)J(NN) and (h1)J(NH) couplings in the DNA A-T base pair: natural bond orbital analysis. <i>Journal of the American Chemical Society</i> , 2002 , 124, 1190-1	16.4	41
142	Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. <i>Journal of the American Chemical Society</i> , 2002 , 124, 2497-505	16.4	276
141	Natural J-coupling analysis: interpretation of scalar J-couplings in terms of natural bond orbitals. Journal of the American Chemical Society, 2001 , 123, 12026-36	16.4	93
140	NATURAL BOND ORBITALS AND EXTENSIONS OF LOCALIZED BONDING CONCEPTS. <i>Chemistry Education Research and Practice</i> , 2001 , 2, 91-104	2.1	582
139	Natural resonance theory. I. General formalism. <i>Journal of Computational Chemistry</i> , 2000 , 21, 411-413	3.5	10
138	Diamagnetism of helium. Journal of Chemical Physics, 2000, 113, 8667-8670	3.9	25
137	Quantum cluster equilibrium theory of liquids: light and heavy QCE/3-21G model water. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 1613-1619	3.6	24
136	Quantum cluster equilibrium theory of liquids: temperature dependent chemical shifts, quadrupole coupling constants and vibrational frequencies in liquid ethanol. <i>Molecular Physics</i> , 1999 , 97, 479-486	1.7	38
135	Quantum cluster equilibrium theory of liquids: Freezing of QCE/3-21G water to tetrakaidecahedral B ucky-ice[] <i>Journal of Chemical Physics</i> , 1999 , 110, 508-515	3.9	67
134	Natural steric analysis of internal rotation barriers. <i>International Journal of Quantum Chemistry</i> , 1999 , 72, 269-280	2.1	159
133	Chemical Bonding as a Superposition Phenomenon. <i>Journal of Chemical Education</i> , 1999 , 76, 1141	2.4	34
132	Origin of Methyl Internal Rotation Barriers. <i>Accounts of Chemical Research</i> , 1999 , 32, 983-993	24.3	107
131	Quantum cluster equilibrium theory of liquids: molecular clusters and thermodynamics of liquid ethanol. <i>Molecular Physics</i> , 1999 , 97, 465-477	1.7	66
130	Natural steric analysis of internal rotation barriers 1999 , 72, 269		1
129	Quantum cluster equilibrium theory of liquids part I: Molecular clusters and thermodynamics of liquid ammonia. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1998 , 102, 197-204		26
128	Quantum cluster equilibrium theory of liquids part II: Temperature dependent chemical shifts, quadrupole coupling constants and vibrational frequencies in liquid ammonia. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1998 , 102, 205-212		24
127	Natural resonance theory: I. General formalism. <i>Journal of Computational Chemistry</i> , 1998 , 19, 593-609	3.5	549

126	Natural resonance theory: II. Natural bond order and valency. <i>Journal of Computational Chemistry</i> , 1998 , 19, 610-627	3.5	432
125	Natural resonance theory: III. Chemical applications. <i>Journal of Computational Chemistry</i> , 1998 , 19, 628-6	5 <u>4.6</u>	416
124	Quantum Cluster Equilibrium Theory of Liquids: Temperature Dependence of Hydrogen Bonding in Liquid N-Methylacetamide Studied by IR Spectra. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 9312-9318	3.4	99
123	Inadequacies of the Point-Dipole Approximation for Describing Electron Nuclear Interactions in Paramagnetic Proteins: Hybrid Density Functional Calculations and the Analysis of NMR Relaxation of High-Spin Iron (III) Rubredoxin. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 8300-8305	3.4	26
122	NMR Investigations of Clostridium pasteurianum Rubredoxin. Origin of Hyperfine 1H, 2H, 13C, and 15N NMR Chemical Shifts in IronBulfur Proteins As Determined by Comparison of Experimental Data with Hybrid Density Functional Calculations Journal of the American Chemical Society, 1998,	16.4	86
121	120, 4806-4814 Protonation of Rhenium Alkyne Complexes Produces B-Allyl Rhenium Complexes via Observable 1-Metallacyclopropene Intermediates. <i>Journal of the American Chemical Society</i> , 1998 , 120, 12500-1251	1 ^{16.4}	57
120	Quantum cluster equilibrium theory of liquids: General theory and computer implementation. <i>Journal of Chemical Physics</i> , 1998 , 109, 367-372	3.9	124
119	Critical test of quantum cluster equilibrium theory: Formic acid at B3LYP/6-31+G* hybrid density functional level. <i>Journal of Chemical Physics</i> , 1998 , 109, 5945-5947	3.9	27
118	Ab initio and regularized force fields of haloethanes: CH3CH2Cl, CH3CHCl2, CH3CF2Cl, and CH3CFCl2. <i>Journal of Chemical Physics</i> , 1998 , 109, 7286-7299	3.9	14
117	Quantum cluster equilibrium theory of liquids: Illustrative application to water. <i>Journal of Chemical Physics</i> , 1998 , 109, 373-384	3.9	90
116	Solvent and concentration dependence of the hydroxyl chemical shift of methanol. <i>Molecular Physics</i> , 1998 , 93, 145-151	1.7	45
115	Natural resonance theory: II. Natural bond order and valency 1998 , 19, 610		1
114	Natural resonance theory: I. General formalism 1998 , 19, 593		13
113	Natural resonance theory: II. Natural bond order and valency 1998 , 19, 610		19
112	Natural resonance theory: III. Chemical applications 1998 , 19, 628		3
111	High Harmonic Generation Spectra of Neutral Helium by the Complex-Scaled (t,t?) Method: Role of Dynamical Electron Correlation. <i>Physical Review Letters</i> , 1997 , 78, 2100-2103	7.4	51
110	Theoretical study of hydrogen bonding in liquid and gaseous N-methylformamide. <i>Journal of Chemical Physics</i> , 1997 , 107, 499-507	3.9	89
109	Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations. <i>Journal of Chemical Physics</i> , 1997 , 107, 1173-1184	3.9	216

108	Structure of Liquid N-Methylacetamide: Temperature Dependence of NMR Chemical Shifts and Quadrupole Coupling Constants. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 8861-8870	2.8	58
107	Natural steric analysis: Ab initio van der Waals radii of atoms and ions. <i>Journal of Chemical Physics</i> , 1997 , 107, 5422-5432	3.9	146
106	Natural bond orbital analysis of steric interactions. <i>Journal of Chemical Physics</i> , 1997 , 107, 5406-5421	3.9	228
105	Nature of H-bonding in clusters, liquids, and enzymes: an ab initio, natural bond orbital perspective. <i>Computational and Theoretical Chemistry</i> , 1997 , 398-399, 181-197		199
104	Constraints on the values of force constants for molecular force field models based on ab initio calculations. <i>Journal of Molecular Structure</i> , 1997 , 410-411, 457-461	3.4	1
103	Effective O-17 quadrupole moments for the calibrated computation of quadrupole coupling parameters at different levels of theory. <i>Journal of Chemical Physics</i> , 1996 , 105, 8223-8230	3.9	29
102	Threshold photoionization spectra of benzyl radical: Cation vibrational states and ab initio calculations. <i>Journal of Chemical Physics</i> , 1996 , 104, 8886-8895	3.9	29
101	Calculations of one-, two- and three-bond nuclear spin-spin couplings in a model peptide and correlations with experimental data. <i>Journal of Biomolecular NMR</i> , 1995 , 5, 332	3	2
100	Experimental and theoretical determination of the temperature dependence of deuteron and oxygen quadrupole coupling constants of liquid water. <i>Journal of Chemical Physics</i> , 1995 , 103, 6941-695	6 ^{3.9}	114
99	Quadrupole coupling constants in linear (HCN)n clusters: Theoretical and experimental evidence for cooperativity effects in CH???N hydrogen bonding. <i>Journal of Chemical Physics</i> , 1995 , 103, 348-352	3.9	38
98	Temperature dependence of hydrogen bonding in neat, liquid formamide. <i>Journal of Chemical Physics</i> , 1995 , 103, 3636-3642	3.9	47
97	Experimental and theoretical studies of hydrogen bonding in neat, liquid formamide. <i>Journal of Chemical Physics</i> , 1995 , 102, 5118-5125	3.9	80
96	Ab Initio Calculations of Protium/Deuterium Fractionation Factors in O2H5+ Clusters. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 8013-8016		15
95	Theoretical Studies of Protium/Deuterium Fractionation Factors and Cooperative Hydrogen Bonding in Peptides. <i>Journal of the American Chemical Society</i> , 1995 , 117, 9619-9624	16.4	40
94	Structure and spectroscopy of (HCN)n clusters: Cooperative and electronic delocalization effects in CH???N hydrogen bonding. <i>Journal of Chemical Physics</i> , 1995 , 103, 333-347	3.9	210
93	Common Textbook and Teaching Misrepresentations of Lewis Structures. <i>Journal of Chemical Education</i> , 1995 , 72, 583	2.4	52
92	Understanding barriers to internal rotation in substituted toluenes and their cations. <i>Journal of Chemical Physics</i> , 1995 , 102, 6787-6805	3.9	101
91	Structure of Magnesium Cluster Grignard Reagents. <i>Inorganic Chemistry</i> , 1995 , 34, 2980-2983	5.1	35

90	Joint treatment of ab initio and experimental data in molecular force field calculations with Tikhonov® method of regularization. <i>Journal of Chemical Physics</i> , 1994 , 100, 1414-1424	3.9	46
89	Calculations of one-, two- and three-bond nuclear spin-spin couplings in a model peptide and correlations with experimental data. <i>Journal of Biomolecular NMR</i> , 1994 , 4, 519-42	3	42
88	Estimates of phi and psi torsion angles in proteins from one-, two- and three-bond nuclear spin-spin couplings: application to staphylococcal nuclease. <i>Journal of Biomolecular NMR</i> , 1994 , 4, 543-51	3	28
87	Use of Hueckel Methodology with ab Initio Molecular Orbitals: Polarizabilities and Prediction of Organic Reactions. <i>Journal of the American Chemical Society</i> , 1994 , 116, 1579-1580	16.4	13
86	The role of delocalization in benzene. <i>Journal of the American Chemical Society</i> , 1993 , 115, 10952-10957	7 16.4	85
85	Boron oxides: Ab initio studies with natural bond orbital analysis. <i>Journal of Chemical Physics</i> , 1993 , 98, 1329-1335	3.9	35
84	Calculation of nuclear spin-spin coupling constants with ab initio molecular orbital wave functions. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 11657-11665		23
83	Natural bond orbitals in multiconfigurational expansions: Local treatment of electron correlation in molecules. <i>Journal of Chemical Physics</i> , 1992 , 97, 1095-1108	3.9	25
82	Structures of the aluminum oxides studied by ab initio methods with natural bond orbital analysis. Journal of Chemical Physics, 1992 , 97, 3420-3430	3.9	52
81	Photoelectron spectroscopy of free radicals with cmll resolution: The benzyl cation. <i>Journal of Chemical Physics</i> , 1991 , 95, 8665-8668	3.9	53
80	Natural Bond Orbital Analysis of Internal Rotation Barriers and Related Phenomena. <i>Israel Journal of Chemistry</i> , 1991 , 31, 277-285	3.4	160
79	Experimental and theoretical study of the relaxation of vibrationally excited HF by NO and CO. <i>Journal of Chemical Physics</i> , 1989 , 91, 1688-1696	3.9	12
78	Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. <i>Chemical Reviews</i> , 1988 , 88, 899-926	68.1	14317
77	Analysis of the geometry of the hydroxymethyl radical by the different hybrids for different spins natural bond orbital procedure. <i>Computational and Theoretical Chemistry</i> , 1988 , 169, 41-62		1727
76	Some remarks on nonorthogonal orbitals in quantum chemistry. <i>Computational and Theoretical Chemistry</i> , 1988 , 165, 189-202		65
75	Transferability of natural bond orbitals. <i>Journal of the American Chemical Society</i> , 1988 , 110, 368-372	16.4	57
74	The 2Ag excited state of (CO)+2. <i>Journal of Chemical Physics</i> , 1988 , 88, 1467-1468	3.9	8
73	The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals, and Radical Ions 1988 , 227-2	236	333

72	Torsion-vibration interactions in hydrogen peroxide. 2. Natural bond orbital analysis. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 4306-4313		23
71	Torsion-vibration interactions in hydrogen peroxide. 1. Calculation of the trans barrier for hydroxyls overtone excitations up to $v = 8$. The Journal of Physical Chemistry, 1988 , 92, 4295-4306		30
70	Photodissociation of (CO)+2: Theoretical studies of ground 2Bu and excited 2Bg potential energy surfaces. <i>Journal of Chemical Physics</i> , 1987 , 87, 392-410	3.9	33
69	Observation of an Eclipsed C-CH3 Bond in a Tricyclic Orthoamide; Experimental and Theoretical Evidence for C?H O Hydrogen Bonds. <i>Angewandte Chemie International Edition in English</i> , 1987 , 26, 117	75-1177	7 76
68	Eine Csp3-gebundene Methylgruppe in ekliptischer Konformation; experimenteller und theoretischer Nachweis von C?H ID-Wasserstoffbrüken. <i>Angewandte Chemie</i> , 1987 , 99, 1216-1218	3.6	21
67	Torsion-vibration interactions in overtone excited states of hydrogen peroxide. <i>The Journal of Physical Chemistry</i> , 1986 , 90, 6405-6408		25
66	Theoretical studies of O2[(H2O)n clusters. <i>Journal of Computational Chemistry</i> , 1986 , 7, 294-305	3.5	28
65	Some remarks on the Cℍ bond dipole moment. <i>Journal of Chemical Physics</i> , 1986 , 84, 2428-2430	3.9	41
64	Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. <i>Journal of Chemical Physics</i> , 1986 , 84, 5687-5705	3.9	429
63	On the role of d orbitals in sulfur hexafluoride. <i>Journal of the American Chemical Society</i> , 1986 , 108, 35	86£85491	3 144
62	Investigation of the differences in stability of the OC???HF and CO???HF complexes. <i>Journal of Chemical Physics</i> , 1985 , 82, 2679-2687	3.9	99
61	Natural localized molecular orbitals. <i>Journal of Chemical Physics</i> , 1985 , 83, 1736-1740	3.9	1785
60	Syn and anti bent hydrazine radical cations. Effect of .sigma.,.pi. mixing on spectral properties. Journal of the American Chemical Society, 1985 , 107, 143-149	16.4	28
59	A theoretical model of bonding in hyperlithiated carbon compounds. <i>Journal of the American Chemical Society</i> , 1985 , 107, 1919-1921	16.4	50
58	Natural population analysis. <i>Journal of Chemical Physics</i> , 1985 , 83, 735-746	3.9	7663
57	Natural bond orbital analysis of near-Hartree E ock water dimer. <i>Journal of Chemical Physics</i> , 1983 , 78, 4066-4073	3.9	2460
56	Mass polarization and Breit-Pauli corrections for the polarizability of helium-4. <i>The Journal of Physical Chemistry</i> , 1982 , 86, 1111-1116		23
55	Coupling of internal rotations in propanelike molecules. <i>International Journal of Quantum Chemistry</i> , 1982 , 21, 487-509	2.1	15

54	Bondlintibond analysis of internal rotation barriers in glyoxal and related molecules: Where INDO fails. <i>International Journal of Quantum Chemistry</i> , 1981 , 19, 781-791	2.1	43
53	Complex-coordinate calculations with complex basis sets. <i>Physical Review A</i> , 1981 , 24, 1254-1259	2.6	12
52	Criteria of accuracy of resonance eigenvalues. <i>International Journal of Quantum Chemistry</i> , 1980 , 17, 1201-1211	2.1	22
51	Antisymmetrization effects in bond-orbital models of internal rotation barriers. <i>Journal of Chemical Physics</i> , 1980 , 72, 2866-2868	3.9	34
50	Natural hybrid orbitals. <i>Journal of the American Chemical Society</i> , 1980 , 102, 7211-7218	16.4	4019
49	9-(9-Borabicyclo[3.3.1]nonyl)-9-azabicyclo[3.3.1]nonane radical cation: a failure of Bredt's rule kinetic stabilization. <i>Journal of Organic Chemistry</i> , 1980 , 45, 2116-2119	4.2	13
48	Quantum-mechanical studies on the origin of barriers to internal rotation about single bonds. Journal of the American Chemical Society, 1979 , 101, 1700-1709	16.4	281
47	Variation-perturbation approach to complex eigenvalues of resonance states. <i>The Journal of Physical Chemistry</i> , 1979 , 83, 1517-1520		4
46	Electron-correlation effects in the positions and widths of two-electron autoionizing resonances. <i>Physical Review A</i> , 1979 , 20, 27-31	2.6	35
45	Complex-coordinate studies of helium autoionizing resonances. <i>International Journal of Quantum Chemistry</i> , 1978 , 14, 727-736	2.1	58
44	Resonance properties of complex-rotated hamiltonians. <i>Molecular Physics</i> , 1978 , 36, 1613-1630	1.7	340
43	Geometrical Aspects of Equilibrium Thermodynamics. <i>Theoretical Chemistry</i> , 1978 , 3, 15-54		1
42	Bivariational calculations of bounds on complex-frequency polarizabilities. <i>Journal of Chemical Physics</i> , 1978 , 68, 2915	3.9	5
41	On the dipole moment of three identical spherical atoms. <i>Molecular Physics</i> , 1978 , 35, 1205-1210	1.7	18
40	Imaginary-frequency polarizability and van der Waals force constants of two-electron atoms, with rigorous bounds. <i>Journal of Chemical Physics</i> , 1977 , 66, 191-198	3.9	64
39	G+K 1⊞g double-minimum excited state of H2. <i>Journal of Chemical Physics</i> , 1977 , 66, 303-305	3.9	12
38	Dynamic polarizabilities of metastable 2 1,3S excited states of He and Li+, with rigorous upper and lower bounds. <i>Journal of Chemical Physics</i> , 1977 , 66, 185-190	3.9	25
37	Conceptual model of "through-bonds" interactions. <i>Journal of the American Chemical Society</i> , 1976 , 98, 4392-4393	16.4	53

36	The principle of maximum overlap. <i>Journal of the American Chemical Society</i> , 1976 , 98, 3745-3749	16.4	25
35	Metric geometry of equilibrium thermodynamics. V. Aspects of heterogeneous equilibrium. <i>Journal of Chemical Physics</i> , 1976 , 65, 559-564	3.9	93
34	Geometric representation of equilibrium thermodynamics. <i>Accounts of Chemical Research</i> , 1976 , 9, 236-	2:40 3	18
33	Moment-theory investigations of photoabsorption and dispersion profiles in atoms and ions. <i>Physical Review A</i> , 1976 , 14, 1042-1056	2.6	128
32	Dynamic polarizabilities of two-electron atoms, with rigorous upper and lower bounds. <i>Journal of Chemical Physics</i> , 1976 , 65, 4913-4926	3.9	131
31	Partitioning Technique for Determinantal Equations 1976 , 307-314		
30	Bounds to the lifetime of the Ar XVII253state. <i>Physical Review A</i> , 1975 , 11, 442-445	2.6	12
29	Metric geometry of equilibrium thermodynamics. <i>Journal of Chemical Physics</i> , 1975 , 63, 2479-2483	3.9	451
28	Metric geometry of equilibrium thermodynamics. III. Elementary formal structure of a vector-algebraic representation of equilibrium thermodynamics. <i>Journal of Chemical Physics</i> , 1975 , 63, 2488-2495	3.9	78
27	Metric geometry of equilibrium thermodynamics. II. Scaling, homogeneity, and generalized Gibbs D uhem relations. <i>Journal of Chemical Physics</i> , 1975 , 63, 2484-2487	3.9	152
26	Metric geometry of equilibrium thermodynamics. IV. Vector-algebraic evaluation of thermodynamic derivatives. <i>Journal of Chemical Physics</i> , 1975 , 63, 2496-2501	3.9	65
25	Relative accuracy of length and velocity forms in oscillator-strength calculations. <i>Physical Review A</i> , 1974 , 10, 1457-1463	2.6	21
24	Dipole oscillator strengths, with rigorous limits of error, for He and Li+. <i>Physical Review A</i> , 1974 , 9, 118-7	1286	65
23	Lower Bounds to Expectation Values: Two-Electron Atoms. Canadian Journal of Chemistry, 1973, 51, 260	0-264	14
22	Variational calculation of continuum corrections to overlap. <i>Journal of Chemical Physics</i> , 1973 , 59, 355-3	62 9	19
21	Variational Wavefunctions for H2+. <i>Journal of Chemical Physics</i> , 1972 , 56, 3798-3801	3.9	8
20	Upper and Lower Bounds to Excited States of Two-Electron Atoms. <i>Journal of Chemical Physics</i> , 1972 , 57, 1738-1745	3.9	5
19	Upper and Lower Bounds to Quantum-Mechanical Properties. <i>Advances in Quantum Chemistry</i> , 1972 , 299-331	1.4	74

18	Dickinson Energy of H2+. Journal of Chemical Physics, 1971, 54, 530-532	3.9	12
17	On a formula of Braun and Rebane for variational bounds to overlap. <i>International Journal of Quantum Chemistry</i> , 1971 , 5, 215-220	2.1	7
16	Calculation of Upper and Lower Bounds to Oscillator Strengths. <i>Journal of Chemical Physics</i> , 1971 , 54, 1874-1881	3.9	56
15	Criteria of Accuracy of Approximate Wavefunctions. <i>Journal of Mathematical Physics</i> , 1970 , 11, 2127-21	3 <u>₿</u> .2	67
14	Variational Upper and Lower Bounds to Dipole Transition Moments. <i>Physical Review Letters</i> , 1970 , 25, 907-909	7.4	26
13	Variational Extensions of Lower Bounds to Expectation Values. <i>Physical Review A</i> , 1970 , 1, 122-124	2.6	16
12	Upper and lower bounds to the van der Waals interactions between atoms. <i>Journal of Physics B: Atomic and Molecular Physics</i> , 1969 , 2, 517-520		11
11	New Formulas for Lower Bounds to Expectation Values. <i>Physical Review</i> , 1969 , 183, 142-147		21
10	Inequalities for Multipole Dispersion Interactions. <i>Journal of Chemical Physics</i> , 1969 , 50, 4136-4137	3.9	10
9	Remark on lower bounds to eigenvalues. International Journal of Quantum Chemistry, 1969, 3, 371-373	2.1	6
8	Upper and lower bounds to quantum-mechanical sum rules. <i>Journal of Physics A</i> , 1968 , 1, 655-660		12
7	Upper and lower bounds to quantum-mechanical sum rules. <i>Journal of Physics A</i> , 1968 , 1, 655-660 Lower bounds to expectation values. <i>Journal of Physics A</i> , 1968 , 1, 305-313		23
7	Lower bounds to expectation values. <i>Journal of Physics A</i> , 1968 , 1, 305-313	3.9	23
7	Lower bounds to expectation values. <i>Journal of Physics A</i> , 1968 , 1, 305-313 Improved lower bounds to expectation values. <i>Journal of Physics A</i> , 1968 , 1, 535-538 Improved Lower Bounds to the Overlap Integral of an Approximate Wavefunction with the True	3.9	23
7 6 5	Lower bounds to expectation values. <i>Journal of Physics A</i> , 1968 , 1, 305-313 Improved lower bounds to expectation values. <i>Journal of Physics A</i> , 1968 , 1, 535-538 Improved Lower Bounds to the Overlap Integral of an Approximate Wavefunction with the True Wavefunction. <i>Journal of Chemical Physics</i> , 1967 , 46, 2448-2449 Reduced Density Matrices of Atoms and Molecules. II. On the N-Representability Problem. <i>Journal</i>	3.9	23 10 23
7 6 5	Lower bounds to expectation values. <i>Journal of Physics A</i> , 1968 , 1, 305-313 Improved lower bounds to expectation values. <i>Journal of Physics A</i> , 1968 , 1, 535-538 Improved Lower Bounds to the Overlap Integral of an Approximate Wavefunction with the True Wavefunction. <i>Journal of Chemical Physics</i> , 1967 , 46, 2448-2449 Reduced Density Matrices of Atoms and Molecules. II. On the N-Representability Problem. <i>Journal of Chemical Physics</i> , 1967 , 47, 2298-2311 Reduced Density Matrices of Atoms and Molecules. I. The 2 Matrix of Double-Occupancy,	3.9	23 10 23 89