## Roman Ashauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6979196/publications.pdf Version: 2024-02-01



ROMAN ASHALLED

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Considerations for using reproduction data in toxicokinetic–toxicodynamic modeling. Integrated<br>Environmental Assessment and Management, 2022, 18, 479-487.                                                                                                         | 1.6 | 6         |
| 2  | Modelling the effects of variability in feeding rate on growth – a vital step for DEB-TKTD modelling.<br>Ecotoxicology and Environmental Safety, 2022, 232, 113231.                                                                                                   | 2.9 | 2         |
| 3  | The application and limitations of exposure multiplication factors in sublethal effect modelling.<br>Scientific Reports, 2022, 12, 6031.                                                                                                                              | 1.6 | 2         |
| 4  | Fish Species Sensitivity Ranking Depends on Pesticide Exposure Profiles. Environmental Toxicology and Chemistry, 2022, 41, 1732-1741.                                                                                                                                 | 2.2 | 2         |
| 5  | Interactive effects of multiple stressors vary with consumer interactions, stressor dynamics and magnitude. Ecology Letters, 2022, 25, 1483-1496.                                                                                                                     | 3.0 | 30        |
| 6  | How to analyse and account for interactions in mixture toxicity with toxicokinetic-toxicodynamic models. Science of the Total Environment, 2022, 843, 157048.                                                                                                         | 3.9 | 18        |
| 7  | Mechanistic Effect Modeling of Earthworms in the Context of Pesticide Risk Assessment: Synthesis of the FORESEE Workshop. Integrated Environmental Assessment and Management, 2021, 17, 352-363.                                                                      | 1.6 | 18        |
| 8  | Predicting Mixture Effects over Time with Toxicokinetic–Toxicodynamic Models (GUTS): Assumptions,<br>Experimental Testing, and Predictive Power. Environmental Science & Technology, 2021, 55,<br>2430-2439.                                                          | 4.6 | 18        |
| 9  | Bioenergetics modelling to analyse and predict the joint effects of multiple stressors: Meta-analysis and model corroboration. Science of the Total Environment, 2020, 749, 141509.                                                                                   | 3.9 | 18        |
| 10 | Effect Modeling Quantifies the Difference Between the Toxicity of Average Pesticide Concentrations<br>and Timeâ€Variable Exposures from Water Quality Monitoring. Environmental Toxicology and<br>Chemistry, 2020, 39, 2158-2168.                                     | 2.2 | 5         |
| 11 | Sublethal effect modelling for environmental risk assessment of chemicals: Problem definition,<br>model variants, application and challenges. Science of the Total Environment, 2020, 745, 141027.                                                                    | 3.9 | 24        |
| 12 | A knowledge-based approach to designing control strategies for agricultural pests. Agricultural<br>Systems, 2020, 183, 102865.                                                                                                                                        | 3.2 | 8         |
| 13 | Common ground between growth models of rival theories: A useful illustration for beginners.<br>Ecological Modelling, 2019, 407, 108712.                                                                                                                               | 1.2 | 3         |
| 14 | Toxicokinetic–Toxicodynamic Modeling of the Effects of Pesticides on Growth of <i>Rattus norvegicus</i> . Chemical Research in Toxicology, 2019, 32, 2281-2294.                                                                                                       | 1.7 | 9         |
| 15 | Building and Applying Quantitative Adverse Outcome Pathway Models for Chemical Hazard and Risk<br>Assessment. Environmental Toxicology and Chemistry, 2019, 38, 1850-1865.                                                                                            | 2.2 | 105       |
| 16 | Factors Affecting the Growth of <i>Pseudokirchneriella subcapitata</i> in Single‣pecies Tests:<br>Lessons for the Experimental Design and the Reproducibility of a Multitrophic Laboratory Microcosm.<br>Environmental Toxicology and Chemistry, 2019, 38, 1120-1131. | 2.2 | 1         |
| 17 | Automated, high-throughput measurement of size and growth curves of small organisms in well plates. Scientific Reports, 2019, 9, 10.                                                                                                                                  | 1.6 | 78        |
| 18 | How to Evaluate the Quality of Toxicokinetic—Toxicodynamic Models in the Context of<br>Environmental Risk Assessment. Integrated Environmental Assessment and Management, 2018, 14,<br>604-614.                                                                       | 1.6 | 27        |

**ROMAN ASHAUER** 

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Physiological modes of action across species and toxicants: the key to predictive ecotoxicology.<br>Environmental Sciences: Processes and Impacts, 2018, 20, 48-57.                                                    | 1.7 | 70        |
| 20 | A standardized tritrophic smallâ€scale system (TriCosm) for the assessment of stressorâ€induced effects<br>on aquatic community dynamics. Environmental Toxicology and Chemistry, 2018, 37, 1051-1060.                 | 2.2 | 4         |
| 21 | Toward refined environmental scenarios for ecological risk assessment of down-the-drain chemicals<br>in freshwater environments. Integrated Environmental Assessment and Management, 2017, 13, 233-248.                | 1.6 | 28        |
| 22 | Prediction of pest pressure on corn root nodes: the POPP-Corn model. Journal of Pest Science, 2017, 90, 161-172.                                                                                                       | 1.9 | 4         |
| 23 | Toxic Mixtures in Time—The Sequence Makes the Poison. Environmental Science & Technology, 2017, 51, 3084-3092.                                                                                                         | 4.6 | 52        |
| 24 | Integrated presentation of ecological risk from multiple stressors. Scientific Reports, 2016, 6, 36004.                                                                                                                | 1.6 | 34        |
| 25 | Reintroducing Environmental Change Drivers in Biodiversity–Ecosystem Functioning Research. Trends<br>in Ecology and Evolution, 2016, 31, 905-915.                                                                      | 4.2 | 110       |
| 26 | Using toxicokineticâ€ŧoxicodynamic modeling as an acute risk assessment refinement approach in<br>vertebrate ecological risk assessment. Integrated Environmental Assessment and Management, 2016, 12,<br>32-45.       | 1.6 | 18        |
| 27 | Modelling survival: exposure pattern, species sensitivity and uncertainty. Scientific Reports, 2016, 6, 29178.                                                                                                         | 1.6 | 56        |
| 28 | Post-ozonation in a municipal wastewater treatment plant improves water quality in the receiving stream. Environmental Sciences Europe, 2016, 28, 1.                                                                   | 2.6 | 34        |
| 29 | Computationally Efficient Implementation of a Novel Algorithm for the General Unified Threshold<br>Model of Survival (GUTS). PLoS Computational Biology, 2016, 12, e1004978.                                           | 1.5 | 8         |
| 30 | Death Dilemma and Organism Recovery in Ecotoxicology. Environmental Science & Technology, 2015, 49, 10136-10146.                                                                                                       | 4.6 | 42        |
| 31 | Toxicology across scales: Cell population growth in vitro predicts reduced fish growth. Science<br>Advances, 2015, 1, e1500302.                                                                                        | 4.7 | 33        |
| 32 | Imidacloprid perturbs feeding of <i>Gammarus pulex</i> at environmentally relevant concentrations.<br>Environmental Toxicology and Chemistry, 2014, 33, 648-653.                                                       | 2.2 | 50        |
| 33 | Minimised Bioconcentration Tests: A Useful Tool for Assessing Chemical Uptake into Terrestrial and<br>Aquatic Invertebrates?. Environmental Science & Technology, 2014, 48, 13497-13503.                               | 4.6 | 13        |
| 34 | Modeling the contribution of toxicokinetic and toxicodynamic processes to the recovery of <i>Gammarus pulex</i> populations after exposure to pesticides. Environmental Toxicology and Chemistry, 2014, 33, 1476-1488. | 2.2 | 26        |
| 35 | Importance of Toxicokinetics for Interspecies Variation in Sensitivity to Chemicals. Environmental Science & Technology, 2014, 48, 5946-5954.                                                                          | 4.6 | 72        |
| 36 | Nanopesticides: Guiding Principles for Regulatory Evaluation of Environmental Risks. Journal of<br>Agricultural and Food Chemistry, 2014, 62, 4227-4240.                                                               | 2.4 | 308       |

**ROMAN ASHAUER** 

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Measured and Modeled Toxicokinetics in Cultured Fish Cells and Application to In Vitro - In Vivo<br>Toxicity Extrapolation. PLoS ONE, 2014, 9, e92303.                                                                                       | 1.1 | 65        |
| 38 | Bioconcentration of Organic Contaminants in Daphnia Resting Eggs. Environmental Science &<br>Technology, 2013, 47, 130909151641005.                                                                                                          | 4.6 | 7         |
| 39 | Effects of repeated pulsed herbicide exposures on the growth of aquatic macrophytes. Environmental Toxicology and Chemistry, 2013, 32, 193-200.                                                                                              | 2.2 | 39        |
| 40 | Comparative Toxicokinetics of Organic Micropollutants in Freshwater Crustaceans. Environmental<br>Science & Technology, 2013, 47, 130712083046004.                                                                                           | 4.6 | 13        |
| 41 | A method to predict and understand fish survival under dynamic chemical stress using standard ecotoxicity data. Environmental Toxicology and Chemistry, 2013, 32, 954-965.                                                                   | 2.2 | 64        |
| 42 | Highly timeâ€variable exposure to chemicals—toward an assessment strategy. Integrated Environmental<br>Assessment and Management, 2013, 9, e27-33.                                                                                           | 1.6 | 31        |
| 43 | The Insecticide Imidacloprid Causes Mortality of the Freshwater Amphipod Gammarus pulex by<br>Interfering with Feeding Behavior. PLoS ONE, 2013, 8, e62472.                                                                                  | 1.1 | 101       |
| 44 | Toxicokinetic-toxicodynamic modelling of survival of Gammarus pulex in multiple pulse exposures to propiconazole: model assumptions, calibration data requirements and predictive power. Ecotoxicology, 2012, 21, 1828-1840.                 | 1.1 | 78        |
| 45 | Significance of Xenobiotic Metabolism for Bioaccumulation Kinetics of Organic Chemicals in<br><i>Gammarus pulex</i> . Environmental Science & Technology, 2012, 46, 3498-3508.                                                               | 4.6 | 84        |
| 46 | Predicting Concentrations of Organic Chemicals in Fish by Using Toxicokinetic Models.<br>Environmental Science & Technology, 2012, 46, 3273-3280.                                                                                            | 4.6 | 113       |
| 47 | Toxicokinetic and toxicodynamic model for diazinon toxicity—mechanistic explanation of differences<br>in the sensitivity of <i>Daphnia magna</i> and <i>Gammarus pulex</i> . Environmental Toxicology and<br>Chemistry, 2012, 31, 2014-2022. | 2.2 | 22        |
| 48 | Uptake and depuration of pharmaceuticals in aquatic invertebrates. Environmental Pollution, 2012, 165, 250-258.                                                                                                                              | 3.7 | 160       |
| 49 | Bayesian experimental design for a toxicokinetic–toxicodynamic model. Journal of Statistical<br>Planning and Inference, 2012, 142, 263-275.                                                                                                  | 0.4 | 20        |
| 50 | Environmental Risk Assessment of Fluctuating Diazinon Concentrations in an Urban and Agricultural<br>Catchment Using Toxicokinetic–Toxicodynamic Modeling. Environmental Science & Technology,<br>2011, 45, 9783-9792.                       | 4.6 | 30        |
| 51 | Mechanistic Toxicodynamic Model for Receptor-Mediated Toxicity of Diazoxon, the Active Metabolite<br>of Diazinon, in <i>Daphnia magna</i> . Environmental Science & Technology, 2011, 45, 4980-4987.                                         | 4.6 | 21        |
| 52 | Toxicokinetic Model Describing Bioconcentration and Biotransformation of Diazinon in Daphnia magna. Environmental Science & amp; Technology, 2011, 45, 4995-5002.                                                                            | 4.6 | 35        |
| 53 | General Unified Threshold Model of Survival - a Toxicokinetic-Toxicodynamic Framework for<br>Ecotoxicology. Environmental Science & Technology, 2011, 45, 2529-2540.                                                                         | 4.6 | 341       |
| 54 | Acute toxicity of organic chemicals to Gammarus pulex correlates with sensitivity of Daphnia magna across most modes of action. Aquatic Toxicology, 2011, 103, 38-45.                                                                        | 1.9 | 59        |

**ROMAN ASHAUER** 

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Toxicokineticâ€ŧoxicodynamic modeling of quantal and graded sublethal endpoints: A brief discussion of concepts. Environmental Toxicology and Chemistry, 2011, 30, 2519-2524.                                               | 2.2 | 77        |
| 56 | Crucial role of mechanisms and modes of toxic action for understanding tissue residue toxicity and internal effect concentrations of organic chemicals. Integrated Environmental Assessment and Management, 2011, 7, 28-49. | 1.6 | 121       |
| 57 | Framework for traitsâ€based assessment in ecotoxicology. Integrated Environmental Assessment and Management, 2011, 7, 172-186.                                                                                              | 1.6 | 123       |
| 58 | Toxicokinetic–toxicodynamic modelling in an individual based context—Consequences of parameter<br>variability. Ecological Modelling, 2010, 221, 1325-1328.                                                                  | 1.2 | 20        |
| 59 | Bioaccumulation kinetics of organic xenobiotic pollutants in the freshwater<br>invertebrate <i>Gammarus pulex</i> modeled with prediction intervals. Environmental Toxicology and<br>Chemistry, 2010, 29, 1625-1636.        | 2.2 | 82        |
| 60 | Toxicokinetic variation in 15 freshwater arthropod species exposed to the insecticide chlorpyrifos.<br>Environmental Toxicology and Chemistry, 2010, 29, 2225-2234.                                                         | 2.2 | 75        |
| 61 | Advantages of toxicokinetic and toxicodynamic modelling in aquatic ecotoxicology and risk assessment. Journal of Environmental Monitoring, 2010, 12, 2056.                                                                  | 2.1 | 165       |
| 62 | Toxicokinetic and Toxicodynamic Modeling Explains Carry-over Toxicity from Exposure to Diazinon by Slow Organism Recovery. Environmental Science & Technology, 2010, 44, 3963-3971.                                         | 4.6 | 96        |
| 63 | Mechanistic effect models for ecological risk assessment of chemicals (MEMoRisk)—a new<br>SETAC-Europe Advisory Group. Environmental Science and Pollution Research, 2009, 16, 250-252.                                     | 2.7 | 32        |
| 64 | CREAM: a European project on mechanistic effect models for ecological risk assessment of chemicals.<br>Environmental Science and Pollution Research, 2009, 16, 614-617.                                                     | 2.7 | 63        |
| 65 | Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils.<br>Chemosphere, 2009, 75, 13-19.                                                                                           | 4.2 | 121       |
| 66 | Toxicodynamic assumptions in ecotoxicological hazard models. Environmental Toxicology and Chemistry, 2008, 27, 1817-1821.                                                                                                   | 2.2 | 58        |
| 67 | New Ecotoxicological Model To Simulate Survival of Aquatic Invertebrates after Exposure to<br>Fluctuating and Sequential Pulses of Pesticides. Environmental Science & Technology, 2007, 41,<br>1480-1486.                  | 4.6 | 144       |
| 68 | Modeling Combined Effects of Pulsed Exposure to Carbaryl and Chlorpyrifos onGammarus Pulex.<br>Environmental Science & Technology, 2007, 41, 5535-5541.                                                                     | 4.6 | 71        |
| 69 | Simulating Toxicity of Carbaryl to <i>Gammarus pulex</i> after Sequential Pulsed Exposure.<br>Environmental Science & Technology, 2007, 41, 5528-5534.                                                                      | 4.6 | 48        |
| 70 | TOXICODYNAMIC ASSUMPTIONS IN ECOTOXICOLOGICAL HAZARD MODELS. Environmental Toxicology and Chemistry, 2007, preprint, 1.                                                                                                     | 2.2 | 6         |
| 71 | PREDICTING EFFECTS ON AQUATIC ORGANISMS FROM FLUCTUATING OR PULSED EXPOSURE TO PESTICIDES.<br>Environmental Toxicology and Chemistry, 2006, 25, 1899.                                                                       | 2.2 | 125       |
| 72 | Uptake and Elimination of Chlorpyrifos and Pentachlorophenol into the Freshwater Amphipod<br>Gammarus pulex. Archives of Environmental Contamination and Toxicology, 2006, 51, 542-548.                                     | 2.1 | 51        |