Harold S Freeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6978647/publications.pdf

Version: 2024-02-01

759233 477307 46 886 12 29 h-index citations g-index papers 47 47 47 1062 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere, 2005, 60, 55-64.	8.2	299
2	Aquatic toxicity evaluation of new direct dyes to the Daphnia magna. Dyes and Pigments, 2007, 73, 81-85.	3.7	121
3	Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture. Science of the Total Environment, 2013, 442, 302-309.	8.0	56
4	Mordant dye application on cotton: optimisation and combination with natural dyes. Coloration Technology, 2017, 133, 369-375.	1.5	52
5	An approach to the design of lightfast disperse dyes-analogs of disperse yellow 42. Dyes and Pigments, 1992, 20, 171-195.	3.7	35
6	Weaver's historic accessible collection of synthetic dyes: a cheminformatics analysis. Chemical Science, 2017, 8, 4334-4339.	7.4	32
7	Analogs of disperse red 167 containing a built-in photostabiliser moiety. Dyes and Pigments, 1992, 20, 147-169.	3.7	22
8	Synthesis and application of yellow azoâ€anthraquinone disperse dyes for polylactide fibres. Coloration Technology, 2010, 126, 92-96.	1.5	19
9	Approach to Waterless Dyeing of Textile Substrates—Use of Atmospheric Plasma. Industrial & Engineering Chemistry Research, 2019, 58, 18478-18487.	3.7	16
10	Synthesis and evaluation of non-genotoxic direct dyes. Fibers and Polymers, 2002, 3, 140-146.	2.1	15
11	Toward the Rational Design of Sustainable Hair Dyes Using Cheminformatics Approaches: Step 1. Database Development and Analysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 2344-2352.	6.7	15
12	New tetrazole based dyes as efficient co-sensitizers for dsscs: Structure-properties relationship. Organic Electronics, 2020, 87, 105964.	2.6	14
13	Towards a reliable prediction of the aquatic toxicity of dyes. Environmental Sciences Europe, 2019, 31, .	5.5	12
14	Disperse dyes containing a built-in oxalanilide stabilizer. Dyes and Pigments, 1999, 42, 53-63.	3.7	11
15	Design, Synthesis, and Pharmacological Screening of Novel Porphyrin Derivatives. Journal of Chemistry, 2013, 2013, 1-11.	1.9	10
16	Mass spectrometric analysis of sulphonated dyes based on diaminobiphenyls. Coloration Technology, 2006, 122, 22-26.	1.5	9
17	Novel yellow azo–anthraquinone dyes for polylactide fibres: effects of alkyl chain length. Coloration Technology, 2012, 128, 121-126.	1.5	9
18	Isomeric tetrazole-based organic dyes for dye-sensitized solar cells: Structure-property relationships. Journal of Molecular Structure, 2022, 1250, 131749.	3.6	9

#	Article	IF	Citations
19	Purification procedures for synthetic dyes. Dyes and Pigments, 1990, 12, 233-242.	3.7	8
20	Variation in hydrophobic chain length of co-adsorbents to improve dye-sensitized solar cell performance. Physical Chemistry Chemical Physics, 2019, 21, 16771-16778.	2.8	8
21	Studies toward a universal dye for textile fibres. Coloration Technology, 2004, 120, 220-225.	1.5	7
22	Molecular and excited state properties of isomeric scarlet disperse dyes. Journal of Molecular Structure, 2018, 1161, 254-261.	3.6	7
23	A study of the effects of fabric pretreatment on color gamut from inkjet printing on polyester. Journal of the Textile Institute, 2018, 109, 1143-1151.	1.9	7
24	Toward the Rational Design of Sustainable Hair Dyes Using Cheminformatics Approaches: Step 2. Identification of Hair Dye Substance Database Analogs in the Max Weaver Dye Library. ACS Sustainable Chemistry and Engineering, 2018, 6, 14248-14256.	6.7	7
25	Dimerised heterobifunctional reactive dyes. Part 1: characterisation using quadrupole timeâ€ofâ€flight mass spectrometry. Coloration Technology, 2018, 134, 470-477.	1.5	7
26	Molecular and excited state properties of photostable anthraquinone blue dyes for hydrophobic fibers. Journal of Molecular Structure, 2019, 1181, 109-117.	3.6	7
27	THE DIHYDROPHENOPHOSPHAZINE RING SYSTEM. 2. THE REACTION OF PHOSPHORUS TRIHALIDES WITH HALO-SUBSTITUTED AND STERICALLY HINDERED DIARYLAMINES. Phosphorous and Sulfur and the Related Elements, 1981, 9, 269-272.	0.2	6
28	Copper salts in the post-metallization of non-genotoxic direct dyes. Fibers and Polymers, 2002, 3, 147-152.	2.1	6
29	Molecular and excited state properties of photostable yellow disperse dyes. Journal of Molecular Structure, 2020, 1207, 127815.	3.6	6
30	Synthesis and mutagenic properties of 4,4'-diamino-p-terphenyl and 4,4'-diamino-p-quaterphenyl. Coloration Technology, 2007, 123, 34-38.	1.5	5
31	Synthesis and mutagenic properties of direct dyes from 4,4'-diamino-p-terphenyl and 4,4'-diamino-p-quaterphenyl. Coloration Technology, 2007, 123, 39-45.	1.5	5
32	Analysis of keratin films as screening tools for predicting the efficacy of potential hair dyes. Coloration Technology, 2019, 135, 253-266.	1.5	5
33	Irradiation of CI Disperse Yellow 23 and Disperse Orange 29 in an Ester Environment 1. Textile Reseach Journal, 1994, 64, 309-315.	2.2	4
34	Synthesis, properties and application of four new 1;2 aluminium-complexed azo dyes. Coloration Technology, 2003, 119, 41-47.	1.5	4
35	Photostability of isotactic polypropylene containing monoazo pigment. Journal of Applied Polymer Science, 2008, 108, 2950-2957.	2.6	4
36	Characterization of the photophysics of a mixed system of red disperse dyes using experimental and theoretical methods. Dyes and Pigments, 2021, 184, 108745.	3.7	4

#	Article	IF	CITATIONS
37	Molecular characterization and ecotoxicological evaluation of the natural dye madder and its chlorinated products. Environmental Science and Pollution Research, 2022, 29, 24261-24268.	5.3	4
38	Developing the methodology of colour gamut analysis and print quality evaluation for textile ink-jet printing: Delphi method. Coloration Technology, 2018, 134, 135-147.	1.5	3
39	Data from X-ray crystallographic analysis and DFT calculations on isomeric azo disperse dyes. Data in Brief, 2018, 21, 675-683.	1.0	3
40	In situ Chelation of Monoazo Dyes in Human Hair Keratin Fibers Using Environmentally Benign Metal Ions. ACS Applied Bio Materials, 2021, 4, 6195-6202.	4.6	3
41	Evaluation of the Toxicological and Color Properties of Anionic Hydrophobic Monoazo Dyes for Sustainable Human Hair Coloration. ACS Sustainable Chemistry and Engineering, 2022, 10, 2593-2601.	6.7	3
42	Iron-Complexed Dyes: Colorants in Green Chemistry. ACS Symposium Series, 2000, , 18-32.	0.5	2
43	Metal-complexed monoazo dyes as sustainable permanent hair dye alternatives—Toxicological and durability properties. Dyes and Pigments, 2022, 197, 109819.	3.7	2
44	Evaluation of new metallized direct dyes for mutagenicity using the Salmonella mammalian mutagenicity assay. Fibers and Polymers, 2005, 6, 235-243.	2.1	1
45	A promising Ames battery for mutagenicity characterization of new dyes. Environmental and Molecular Mutagenesis, 2021, 62, 52-65.	2.2	1
46	Molecular and excited state properties of photostable anthraquinone red and violet dyes for hydrophobic fibers. Journal of Molecular Structure, 2022, 1248, 131349.	3.6	1