Tae-kyu Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6978583/publications.pdf

Version: 2024-02-01

50276 76900 6,172 159 46 74 citations h-index g-index papers 163 163 163 6268 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Noble metal free few-layered perovskite-based Ba2NbFeO6 nanostructures on exfoliated g-C3N4 layers as highly efficient catalysts for enhanced solar fuel production. Applied Surface Science, 2022, 572, 151406.	6.1	4
2	Impact of the number of surface-attached tungsten diselenide layers on cadmium sulfide nanorods on the charge transfer and photocatalytic hydrogen evolution rate. Journal of Colloid and Interface Science, 2022, 608, 903-911.	9.4	9
3	Highly Durable and Fully Dispersed Cobalt Diatomic Site Catalysts for CO ₂ Photoreduction to CH ₄ . Angewandte Chemie, 2022, 134, .	2.0	20
4	Highly Durable and Fully Dispersed Cobalt Diatomic Site Catalysts for CO ₂ Photoreduction to CH ₄ . Angewandte Chemie - International Edition, 2022, 61, .	13.8	83
5	Effective dye degradation by an environment-friendly porous few-layered carbon nitride photocatalyst developed using sequential molecule self-assembly. Environmental Research, 2022, 204, 112362.	7.5	4
6	Development of an experimental apparatus to observe ultrafast phenomena by tender X-ray absorption spectroscopy at PAL-XFEL. Journal of Synchrotron Radiation, 2022, 29, 194-201.	2.4	1
7	Augmented photoelectrochemical water reduction: influence of copper vacancies and hole-transport layer on CuBi ₂ O ₄ photocathode. Journal of Materials Chemistry A, 2022, 10, 6623-6635.	10.3	12
8	Ultrathin layered Zn-doped MoS2 nanosheets deposited onto CdS nanorods for spectacular photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2022, 905, 164193.	5 . 5	17
9	<i>In situ</i> growth of Ag ₂ S quantum dots on SnS ₂ nanosheets with enhanced charge separation efficiency and CO ₂ reduction performance. Journal of Materials Chemistry A, 2022, 10, 7291-7299.	10.3	13
10	Construction of 1D TiO2 nanotubes integrated ultrathin 2D ZnIn2S4 nanosheets heterostructure for highly efficient and selective photocatalytic CO2 reduction. Applied Surface Science, 2022, 587, 152895.	6.1	26
11	Inverse Opal CuBi ₂ O ₄ Photocathodes for Robust Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2022, 5, 6050-6058.	5.1	12
12	Long-Term Exposure of MoS2 to Oxygen and Water Promoted Armchair-to-Zigzag-Directional Line Unzippings. Nanomaterials, 2022, 12, 1706.	4.1	3
13	Boosting charge transfers in cadmium sulfide nanorods with a few layered Ni-doped MoS2 nanosheets for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 40218-40226.	7.1	11
14	Pyrrolic Nâ€Stabilized Monovalent Ni Singleâ€Atom Electrocatalyst for Efficient CO ₂ Reduction: Identifying the Role of Pyrrolic–N and Synergistic Electrocatalysis. Advanced Functional Materials, 2022, 32, .	14.9	40
15	Cobalt doping stabilizes the expanded structure of layered double hydroxide cathodes for application in fast charging Ni–Zn batteries. Journal of Applied Electrochemistry, 2022, 52, 1449-1458.	2.9	1
16	Skeletal Cu ₇ S ₄ Nanocages Wrapped by Fewâ€Layered Black Phosphorus Nanosheets as an Efficient H ₂ Production Photocatalyst. ChemCatChem, 2021, 13, 304-312.	3.7	17
17	Recent advances in metal–organic framework-based photocatalysts for hydrogen production. Sustainable Energy and Fuels, 2021, 5, 1597-1618.	4.9	39
18	Shot noise limited soft x-ray absorption spectroscopy in solution at a SASE-FEL using a transmission grating beam splitter. Structural Dynamics, 2021, 8, 014303.	2.3	7

#	Article	IF	CITATIONS
19	Following Metal-to-Ligand Charge-Transfer Dynamics with Ligand and Spin Specificity Using Femtosecond Resonant Inelastic X-ray Scattering at the Nitrogen K-Edge. Journal of Physical Chemistry Letters, 2021, 12, 6676-6683.	4.6	12
20	<scp>Timeâ€resolved</scp> Xâ€Ray Absorption Spectroscopy of Solvated [Ru(mâ€bpy) ₃] ²⁺ Complex: Electronic Structures of ³ dd State. Bulletin of the Korean Chemical Society, 2021, 42, 1379-1382.	1.9	1
21	Boosting Water Oxidation Performance of BiVO ₄ Photoanode by Vertically Stacked NiO Nanosheets Coupled with Atomically Dispersed Iridium Sites. ACS Applied Energy Materials, 2021, 4, 11353-11366.	5.1	20
22	Exposure of NiFe-LDH active sites by cation–exchange to promote photoelectrochemical water splitting performance. Applied Surface Science, 2021, 570, 151134.	6.1	17
23	In situ preparation of polymeric cobalt phthalocyanine–decorated TiO2 nanorods for efficient photocatalytic CO2 reduction. Materials Today Chemistry, 2021, 22, 100589.	3.5	12
24	Ligand-Field Effects in a Ruthenium(II) Polypyridyl Complex Probed by Femtosecond X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 12165-12172.	4.6	3
25	Facile synthesis of cauliflower-like cobalt-doped Ni3Se2 nanostructures as high-performance cathode materials for aqueous zinc-ion batteries. International Journal of Hydrogen Energy, 2020, 45, 7741-7750.	7.1	16
26	Highly efficient hydrogen generation in water using 1D CdS nanorods integrated with 2D SnS2 nanosheets under solar light irradiation. Applied Surface Science, 2020, 508, 144803.	6.1	39
27	Synergetic catalytic behavior of dual metal-organic framework coated hematite photoanode for photoelectrochemical water splitting performance. Journal of Catalysis, 2020, 391, 471-479.	6.2	23
28	Construction of a Highly Efficient and Durable 1D Ternary CdS/ZnS/Pt Nanohybrid Catalyst for Photocatalytic CO ₂ Reduction into Chemical Fuels under Solar Light Irradiation. ACS Applied Energy Materials, 2020, 3, 10533-10540.	5.1	29
29	Indium Phosphide Quantum Dots Integrated with Cadmium Sulfide Nanorods for Photocatalytic Carbon Dioxide Reduction. ChemCatChem, 2020, 12, 4550-4557.	3.7	20
30	<i>In situ</i> addition of Ni salt onto a skeletal Cu ₇ S ₄ integrated CdS nanorod photocatalyst for efficient production of H ₂ under solar light irradiation. Catalysis Science and Technology, 2020, 10, 3542-3551.	4.1	20
31	Constructing ordered paths to improve the charge separation and light harvesting capacity towards efficient solar water oxidation performance. Applied Catalysis B: Environmental, 2020, 269, 118761.	20.2	30
32	Significant Improvements on BiVO ₄ @CoPi Photoanode Solar Water Splitting Performance by Extending Visible-Light Harvesting Capacity and Charge Carrier Transportation. ACS Applied Energy Materials, 2020, 3, 4474-4483.	5.1	38
33	Ultra-small cobalt nanocrystals embedded in 2D-MoS2 nano-sheets as efficient co-catalyst for solar-driven hydrogen production: Study of evolution rate dependence on cobalt nanocrystal size. Applied Surface Science, 2019, 494, 239-248.	6.1	11
34	Hollow CoSe ₂ nanocages derived from metal–organic frameworks as efficient non-precious metal co-catalysts for photocatalytic hydrogen production. Catalysis Science and Technology, 2019, 9, 4702-4710.	4.1	10
35	Using Ultrafast X-ray Spectroscopy To Address Questions in Ligand-Field Theory: The Excited State Spin and Structure of [Fe(dcpp) ₂] ²⁺ . Inorganic Chemistry, 2019, 58, 9341-9350.	4.0	29
36	UV-photochemistry of the biologically relevant thiol group and the disulfide bond: Evolution of early photoproducts from picosecond X-ray absorption spectroscopy at the sulfur K-Edge. EPJ Web of Conferences, 2019, 205, 09006.	0.3	0

#	Article	IF	Citations
37	Few layered black phosphorus/MoS2 nanohybrid: A promising co-catalyst for solar driven hydrogen evolution. Applied Catalysis B: Environmental, 2019, 241, 491-498.	20.2	146
38	Multidirectional-charge-transfer urchin-type Mo-doped W ₁₈ O ₄₉ nanostructures on CdS nanorods for enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2018, 8, 1880-1891.	4.1	26
39	Influence of surface-functionalized multi-walled carbon nanotubes on CdS nanohybrids for effective photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 236, 294-303.	20.2	78
40	Designing CdS Mesoporous Networks on Coâ€C@Co ₉ S ₈ Doubleâ€6helled Nanocages as Redoxâ€Mediatorâ€Free Zâ€6cheme Photocatalyst. ChemSusChem, 2018, 11, 245-253.	6.8	74
41	Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 224, 230-238.	20.2	93
42	Drastic Improvement of 1D-CdS Solar-Driven Photocatalytic Hydrogen Evolution Rate by Integrating with NiFe Layered Double Hydroxide Nanosheets Synthesized by Liquid-Phase Pulsed-Laser Ablation. ACS Sustainable Chemistry and Engineering, 2018, 6, 16734-16743.	6.7	45
43	Enhanced Photocatalytic Hydrogen Evolution by Integrating Dual Co-Catalysts on Heterophase CdS Nano-Junctions. ACS Sustainable Chemistry and Engineering, 2018, 6, 12835-12844.	6.7	73
44	UV-Photochemistry of the Disulfide Bond: Evolution of Early Photoproducts from Picosecond X-ray Absorption Spectroscopy at the Sulfur K-Edge. Journal of the American Chemical Society, 2018, 140, 6554-6561.	13.7	30
45	Transient metal-centered states mediate isomerization of a photochromic ruthenium-sulfoxide complex. Nature Communications, 2018, 9, 1989.	12.8	29
46	Tuning Band Alignments and Charge-Transport Properties through MoSe ₂ Bridging between MoS ₂ and Cadmium Sulfide for Enhanced Hydrogen Production. ACS Applied Materials & Distribution (1988), 10, 26153-26161.	8.0	43
47	Hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature: Boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation. Applied Surface Science, 2017, 401, 314-322.	6.1	56
48	Heterostructured WS ₂ â€MoS ₂ Ultrathin Nanosheets Integrated on CdS Nanorods to Promote Charge Separation and Migration and Improve Solarâ€Driven Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 1563-1570.	6.8	150
49	Development of an Arsenobetaine Standard Solution with Metrological Traceability to the <scp>SI</scp> by an Arsenicâ€specific Mass Balance Method. Bulletin of the Korean Chemical Society, 2017, 38, 237-245.	1.9	1
50	Light-Induced Radical Formation and Isomerization of an Aromatic Thiol in Solution Followed by Time-Resolved X-ray Absorption Spectroscopy at the Sulfur K-Edge. Journal of the American Chemical Society, 2017, 139, 4797-4804.	13.7	26
51	Development of a Pasteâ€type Certified Reference Material of Tomato for Elemental Analysis: Certification and Longâ€term Stability Study. Bulletin of the Korean Chemical Society, 2017, 38, 211-218.	1.9	8
52	Ultrathin MoS 2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 212, 7-14.	20.2	167
53	In situ preparation of few-layered WS 2 nanosheets and exfoliation into bilayers on CdS nanorods for ultrafast charge carrier migrations toward enhanced photocatalytic hydrogen production. Journal of Catalysis, 2017, 351, 153-160.	6.2	98
54	Hierarchical BiOI nanostructures supported on a metal organic framework as efficient photocatalysts for degradation of organic pollutants in water. Dalton Transactions, 2017, 46, 6013-6023.	3.3	95

#	Article	IF	CITATIONS
55	Hydrazine-assisted formation of ultrathin MoS ₂ nanosheets for enhancing their co-catalytic activity in photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 6981-6991.	10.3	120
56	Modulation of charge carrier pathways in CdS nanospheres by integrating MoS ₂ and Ni ₂ P for improved migration and separation toward enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2017, 7, 641-649.	4.1	76
57	Earth abundant transition metal-doped few-layered MoS ₂ nanosheets on CdS nanorods for ultra-efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2017, 5, 20851-20859.	10.3	75
58	Formation of hybrid nanostructures comprising perovskite (Ba5Nb4O15)-MoS2 ultrathin nanosheets on CdS nanorods: Toward enhanced solar-driven H2 production. Journal of Catalysis, 2017, 352, 617-626.	6.2	15
59	Optimization of Active Sites of MoS ₂ Nanosheets Using Nonmetal Doping and Exfoliation into Few Layers on CdS Nanorods for Enhanced Photocatalytic Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2017, 5, 7651-7658.	6.7	73
60	Synthesis of Ultraâ€6mall Palladium Nanoparticles Deposited on CdS Nanorods by Pulsed Laser Ablation in Liquid: Role of Metal Nanocrystal Size in the Photocatalytic Hydrogen Production. Chemistry - A European Journal, 2017, 23, 13112-13119.	3.3	59
61	Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts. Applied Surface Science, 2017, 396, 421-429.	6.1	100
62	Monitoring Excited State Charge Transfer of Transition Metal Mixed-Valence Complexes with Femtosecond X-ray Absorption and Emission Spectroscopy. , $2016, , .$		1
63	Controlled synthesis of heterostructured Ag@AgI/ZnS microspheres with enhanced photocatalytic activity and selective separation of methylene blue from mixture dyes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66, 200-209.	5.3	41
64	Reactivity of molecular oxygen with aluminum clusters: Density functional and <i>Ab Initio</i> molecular dynamics simulation study. International Journal of Quantum Chemistry, 2016, 116, 547-554.	2.0	4
65	Anionic precursor-mediated morphology-controlled synthesis of ZnS nanostructures: Morphology-dependent tunable photoluminescence in the visible region and pulsed laser-induced efficient reduction of Cr(VI). Ceramics International, 2016, 42, 12046-12054.	4.8	15
66	Well-wrapped reduced graphene oxide nanosheets on Nb ₃ O ₇ (OH) nanostructures as good electron collectors and transporters for efficient photocatalytic degradation of rhodamine B and phenol. RSC Advances, 2016, 6, 37180-37188.	3.6	39
67	Ground and low-lying excited states of PtCN and PdCN: theoretical investigation including spin–orbit coupling. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	6
68	Hierarchical dandelion-flower-like cobalt-phosphide modified CdS/reduced graphene oxide-MoS ₂ nanocomposites as a noble-metal-free catalyst for efficient hydrogen evolution from water. Catalysis Science and Technology, 2016, 6, 6197-6206.	4.1	131
69	Transformation of CeO2 into a mixed phase CeO2/Ce2O3 nanohybrid by liquid phase pulsed laser ablation for enhanced photocatalytic activity through Z-scheme pattern. Ceramics International, 2016, 42, 18495-18502.	4.8	103
70	Rational Synthesis of Metal–Organic Framework-Derived Noble Metal-Free Nickel Phosphide Nanoparticles as a Highly Efficient Cocatalyst for Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2016, 4, 7158-7166.	6.7	131
71	Self-assembly of CeO2 nanostructures/reduced graphene oxide composite aerogels for efficient photocatalytic degradation of organic pollutants in water. Journal of Alloys and Compounds, 2016, 688, 527-536.	5.5	130
72	Multicomponent transition metal phosphides derived from layered double hydroxide double-shelled nanocages as an efficient non-precious co-catalyst for hydrogen production. Journal of Materials Chemistry A, 2016, 4, 13890-13898.	10.3	102

#	Article	IF	CITATIONS
73	An oxygen-vacancy rich 3D novel hierarchical MoS ₂ /BiOI/AgI ternary nanocomposite: enhanced photocatalytic activity through photogenerated electron shuttling in a Z-scheme manner. Physical Chemistry Chemical Physics, 2016, 18, 24984-24993.	2.8	119
74	Reduced-graphene-oxide-wrapped BiOI-AgI heterostructured nanocomposite as a high-performance photocatalyst for dye degradation under solar light irradiation. Solid State Sciences, 2016, 61, 32-39.	3.2	52
75	Zeolitic imidazolate framework-67 (ZIF-67) rhombic dodecahedrons as full-spectrum light harvesting photocatalyst for environmental remediation. Solid State Sciences, 2016, 62, 82-89.	3.2	60
76	Noble metal-free ultrathin MoS ₂ nanosheet-decorated CdS nanorods as an efficient photocatalyst for spectacular hydrogen evolution under solar light irradiation. Journal of Materials Chemistry A, 2016, 4, 18551-18558.	10.3	118
77	Self-Assembled Silica Nanostructures: Simultaneous Discrimination of Handedness, Pitch and Diameter of Helical Silica Nanotubes. Journal of Nanoscience and Nanotechnology, 2016, 16, 1988-1992.	0.9	1
78	Electronic and Molecular Structure of the Transient Radical Photocatalyst Mn(CO) ₅ and Its Parent Compound Mn ₂ (CO) ₁₀ . Inorganic Chemistry, 2016, 55, 5895-5903.	4.0	19
79	Tracking reaction dynamics in solution by pump–probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering). Chemical Communications, 2016, 52, 3734-3749.	4.1	35
80	Performance of Density Functional Theory and Relativistic Effective Core Potential for Ru-Based Organometallic Complexes. Journal of Physical Chemistry A, 2016, 120, 2128-2134.	2.5	11
81	Surface oxygen vacancy assisted electron transfer and shuttling for enhanced photocatalytic activity of a Z-scheme CeO ₂ –AgI nanocomposite. RSC Advances, 2016, 6, 19341-19350.	3.6	131
82	Time-Resolved X-ray Spectroscopy in the Water Window: Elucidating Transient Valence Charge Distributions in an Aqueous Fe(II) Complex. Journal of Physical Chemistry Letters, 2016, 7, 465-470.	4.6	50
83	Effects of Laser Energy Density on Size and Morphology of <scp>NiO</scp> Nanoparticles Prepared by Pulsed Laser Ablation in Liquid. Bulletin of the Korean Chemical Society, 2015, 36, 5-6.	1.9	7
84	Efficient photocatalytic degradation of methylene blue by heterostructured ZnO–RGO/RuO2 nanocomposite under the simulated sunlight irradiation. Ceramics International, 2015, 41, 6999-7009.	4.8	73
85	Green synthesis of Agl nanoparticle-functionalized reduced graphene oxide aerogels with enhanced catalytic performance and facile recycling. RSC Advances, 2015, 5, 67394-67404.	3.6	103
86	Green synthesis of the reduced graphene oxide–Cul quasi-shell–core nanocomposite: A highly efficient and stable solar-light-induced catalyst for organic dye degradation in water. Applied Surface Science, 2015, 358, 159-167.	6.1	48
87	Synthesis of CeO2/Pd nanocomposites by pulsed laser ablation in liquids for the reduction of 4-nitrophenol to 4-aminophenol. Ceramics International, 2015, 41, 12432-12438.	4.8	40
88	Synthesis and detailed spectroscopic characterization of various hydroxy-functionalized fluorescent chalcones: A combined experimental and theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 557-564.	3.9	17
89	Green synthesis of Agl-reduced graphene oxide nanocomposites: Toward enhanced visible-light photocatalytic activity for organic dye removal. Applied Surface Science, 2015, 341, 175-184.	6.1	95
90	Self-assembled macro porous ZnS–graphene aerogels for photocatalytic degradation of contaminants in water. RSC Advances, 2015, 5, 18342-18351.	3.6	108

#	Article	IF	Citations
91	Element-Specific Characterization of Transient Electronic Structure of Solvated Fe(II) Complexes with Time-Resolved Soft X-ray Absorption Spectroscopy. Accounts of Chemical Research, 2015, 48, 2957-2966.	15.6	30
92	Identifying the major intermediate species by combining time-resolved X-ray solution scattering and X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 23298-23302.	2.8	15
93	Enhanced photocatalytic activity and anti-photocorrosion of AgI nanostructures by coupling with graphene-analogue boron nitride nanosheets. Ceramics International, 2015, 41, 13793-13803.	4.8	90
94	Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core–shell nanospheres for catalytic reduction of nitrobenzene to aniline. Applied Surface Science, 2015, 357, 2112-2120.	6.1	46
95	Reduced graphene oxide wrapped ZnS–Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants. Applied Surface Science, 2015, 324, 725-735.	6.1	145
96	Excited State Structural Dynamics Probed with Time-Resolved Sulfur K-Edge X-Ray Absorption Spectroscopy. Springer Proceedings in Physics, 2015, , 403-406.	0.2	1
97	Magnetic-Field-Dependent Fraunhofer Diffraction Pattern by 4f Imaging System in Transparent Magnetooptic Thin Film. Springer Proceedings in Physics, 2015, , 320-322.	0.2	0
98	Thick-lens velocity-map imaging spectrometer with high resolution for high-energy charged particles. Journal of Instrumentation, 2014, 9, P05005-P05005.	1.2	49
99	The influence of laser wavelength and fluence on palladium nanoparticles produced by pulsed laser ablation in deionized water. Solid State Sciences, 2014, 37, 96-102.	3.2	36
100	Development of Isotope Dilution LC-MS/MS Method for Accurate Determination of Arsenobetaine in Oyster Certified Reference Material. Bulletin of the Korean Chemical Society, 2014, 35, 821-827.	1.9	6
101	Excited State Structural Dynamics Probed with Time-Resolved Sulfur K-edge X-ray Absorption Spectroscopy. , 2014, , .		0
102	Tracking Electronic and Molecular Structural Dynamics during Dissociation of the Photocatalyst Mn2(CO)10 via Time-Resolved X-Ray Spectroscopy. , 2014, , .		0
103	Density Functional Theory Assessment of Molecular Structures and Energies of Neutral and Anionic Al _{<i>n</i>} (<i>n</i> (3) 117, 9293-9303.	2.5	41
104	Strong Spin–Orbit Coupling Facilitates C–H Activation in the Reactions of Os ⁺ with CH ₃ F: Theoretical Investigations. Journal of Chemical Theory and Computation, 2013, 9, 1087-1092.	5.3	8
105	Global Reaction Pathways in the Photodissociation of I ₃ ^{â^'} Ions in Solution at 267 and 400 nm Studied by Picosecond Xâ€ray Liquidography. ChemPhysChem, 2013, 14, 3687-3697.	2.1	18
106	Elucidating Charge Delocalization in the High-Spin State of aqueous FellSpin-Crossover Compounds via Time-Resolved Spectroscopy in the X-ray Water Window. EPJ Web of Conferences, 2013, 41, 05037.	0.3	0
107	Theoretical Investigation of the Reaction of Ce+with Water in the Gas Phase: Density Functional Theory Calculations. Bulletin of the Korean Chemical Society, 2013, 34, 1551-1554.	1.9	1
108	Photodissociation Dynamics of C ₆ F ₅ Br at 234 nm: Fluorination Effects on Br/Br [*] Formation Pathways. Bulletin of the Korean Chemical Society, 2013, 34, 957-959.	1.9	0

#	Article	IF	CITATIONS
109	Accurate Measurement of Isotope Amount Ratios of Lead in Bronze with Multicollector Inductively Coupled Plasma Mass Spectrometry. Mass Spectrometry Letters, 2013, 4, 87-90.	0.5	O
110	Ligand-field symmetry effects in Fe(ii) polypyridyl compounds probed by transient X-ray absorption spectroscopy. Faraday Discussions, 2012, 157, 463.	3.2	49
111	Intracluster ion–molecule reactions between V+ and methyl acetate or ethyl acetate clusters. International Journal of Mass Spectrometry, 2012, 315, 15-21.	1.5	4
112	Effect of organic gelator template and preparation method on the structure and morphology of nanosized polymorphic titanium oxide using the sol–gel process. Research on Chemical Intermediates, 2012, 38, 685-692.	2.7	1
113	Photodissociation of C ₃ H ₅ Br and C ₄ H ₇ Br at 234 nm. Bulletin of the Korean Chemical Society, 2012, 33, 143-148.	1.9	2
114	Density Functional Theory Study of Competitive Reaction Pathways of Ti ⁺ with Fluorinated Acetone in the Gas Phase. Journal of the Korean Chemical Society, 2012, 56, 14-19.	0.2	1
115	Organometallic Chemistry in Solutions Investigated with Time-resolved X-ray Spectroscopy. , 2012, , .		0
116	Competitive Hydrogen Transfer Reactions between Fe ⁺ and C ₂ H ₅ Colety, 2012, 33, 1449-1450.	1.9	0
117	Density Functional and Spinâ^'Orbit Ab Initio Study of CF ₃ Br: Molecular Properties and Electronic Curve Crossing. Journal of Physical Chemistry A, 2011, 115, 1264-1271.	2.5	12
118	Femtosecond Soft X-ray Spectroscopy of Solvated Transition-Metal Complexes: Deciphering the Interplay of Electronic and Structural Dynamics. Journal of Physical Chemistry Letters, 2011, 2, 880-884.	4.6	169
119	Polycrystalline tungsten oxide nanofibers for gas-sensing applications. Sensors and Actuators B: Chemical, 2011, 160, 549-554.	7.8	72
120	Dynamics of Br(2Pj) Formation in the Photodissociation of Bromobenzene. Bulletin of the Korean Chemical Society, 2011, 32, 659-663.	1.9	5
121	Photolysis of Br ₂ in CCl ₄ studied by time-resolved X-ray scattering. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, 252-260.	0.3	26
122	Photochemistry of HgBr2 in methanol investigated using time-resolved X-ray liquidography. Physical Chemistry Chemical Physics, 2010, 12, 11536.	2.8	33
123	Photo-Induced Spin-State Conversion in Solvated Transition Metal Complexes Probed via Time-Resolved Soft X-ray Spectroscopy. Journal of the American Chemical Society, 2010, 132, 6809-6816.	13.7	135
124	Competitive Ion-Molecule Reactions within V+(CH3COOCH3)nClusters. Bulletin of the Korean Chemical Society, 2010, 31, 271-272.	1.9	2
125	Intramolecular Ion-Molecule Reactions within Ti ⁺ (CH ₃ COCH ₃) _n Heteroclusters: Oxidation Pathway via C=O Bond Activation. Bulletin of the Korean Chemical Society, 2010, 31, 953-958.	1.9	4
126	Probing reaction dynamics of transition-metal complexes is in solution in solution in time-resolved X-ray spectroscopy. Journal of Physics: Conference Series, 2009, 148, 012043.	0.4	10

#	Article	IF	CITATIONS
127	Spatiotemporal Kinetics in Solution Studied by Timeâ€Resolved Xâ€Ray Liquidography (Solution) Tj ETQq1 1 0.78	4314 rgB1 2.1	T LOverlock 1
128	Spatiotemporal Kinetics in Solution Studied by Time-Resolved X-Ray Liquidography (Solution) Tj ETQq0 0 0 rgBT /0	Oyerlock 1	0 ₃ Tf 50 702
129	Spatiotemporal Kinetics in Solution Studied by Time-Resolved X-Ray Liquidography (Solution) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 T
130	Synthesis of Length-Controlled Aerosol Carbon Nanotubes and Their Dispersion Stability in Aqueous Solution. Langmuir, 2009, 25, 1739-1743.	3.5	39
131	Theoretical Study on the Reaction of Ti ⁺ with Acetone and the Role of Intersystem Crossing. Journal of Physical Chemistry A, 2009, 113, 11382-11389.	2.5	9
132	Photodissociation Dynamics of C2H4BrCl: Nonadiabatic Dynamics with Intrinsic CsSymmetry. Bulletin of the Korean Chemical Society, 2009, 30, 2962-2968.	1.9	6
133	Capturing Transient Solute Structures in Solution by Pulsed X-ray Diffraction. Springer Series in Chemical Physics, 2009, , 131-133.	0.2	O
134	The Role of the Neutral and Cationic Gelators from (1S,2S)-(-)-Diphenylethylenediamine for the Preparation of Silica Nano Tubes. Bulletin of the Korean Chemical Society, 2009, 30, 1641-1643.	1.9	3
135	Transient Xâ€ray Diffraction Reveals Global and Major Reaction Pathways for the Photolysis of lodoform in Solution. Angewandte Chemie - International Edition, 2008, 47, 1047-1050.	13.8	53
136	Probe of I(2Pj) atoms using two-photon resonant four-wave mixing spectroscopy following the 266-nm photodissociations of various alkyl and perfluoroalkyl iodides. Journal of Molecular Spectroscopy, 2008, 249, 43-50.	1.2	4
137	Observation of vibronic emission spectra of difluorobenzyl radicals: Jet-cooled 2,5-difluorobenzyl radical. Chemical Physics Letters, 2008, 454, 207-211.	2.6	11
138	Spectroscopic evidence of α-methylbenzyl radical in the gas phase. Chemical Physics Letters, 2008, 465, 193-196.	2.6	21
139	Nanocatalyst-Based Assay Using DNA-Conjugated Au Nanoparticles for Electrochemical DNA Detection. Langmuir, 2008, 24, 9883-9888.	3.5	68
140	Capturing Transient Structures in the Elimination Reaction of Haloalkane in Solution by Transient X-ray Diffraction. Journal of the American Chemical Society, 2008, 130, 5834-5835.	13.7	54
141	Reassignment of Isomeric Dimethylbenzyl Radicals Generated by Corona Discharge of 1,2,4-Trimethylbenzene. Bulletin of the Korean Chemical Society, 2008, 29, 2341-2345.	1.9	5
142	Picosecond Diffraction at the ESRF: How Far Have We Come and Where Are We Going?. AIP Conference Proceedings, 2007, , .	0.4	6
143	Ultrafast X-ray Diffraction of Photodissociation of Iodoform in Solution. AIP Conference Proceedings, 2007, , .	0.4	1
144	Photodissociation dynamics of CF3Br at 225nm: Direct dissociation via pseudo-linear geometry. Chemical Physics Letters, 2007, 446, 31-35.	2.6	13

#	Article	IF	CITATIONS
145	Vibronic emission spectra of jet-cooled 2,3-difluorobenzyl radical in a corona excited supersonic expansion. Chemical Physics Letters, 2007, 447, 197-201.	2.6	8
146	Density Functional and Ab Initio Study of $Cr(CO)n$ (n = $1\hat{a}^{3}$) Complexes. Journal of Physical Chemistry A, 2007, 111, 4697-4710.	2.5	20
147	Substitution Effect on Electronic Transition of Bi-substituted Benzyl-type Radicals: Symmetric Substitution. Bulletin of the Korean Chemical Society, 2007, 28, 1993-1995.	1.9	2
148	Intracluster Ionâ^'Molecule Reactions of Ti+with C2H5OH and CF3CH2OH Clusters:Â Influence of Fluorine Substituents on Chemical Reactivity. Journal of Physical Chemistry A, 2006, 110, 13724-13730.	2.5	9
149	Analyzing solution-phase time-resolved x-ray diffraction data by isolated-solute models. Journal of Chemical Physics, 2006, 125, 174504.	3.0	23
150	Spatiotemporal reaction kinetics of an ultrafast photoreaction pathway visualized by time-resolved liquid x-ray diffraction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9410-9415.	7.1	64
151	Impulsive solvent heating probed by picosecond x-ray diffraction. Journal of Chemical Physics, 2006, 124, 124504.	3.0	102
152	The dynamics of Br(2Pj) formation in the photodissociation of vinyl and perfluorovinyl bromides. Journal of Chemical Physics, 2005, 122, 034308.	3.0	10
153	Ultrafast X-ray Diffraction of Transient Molecular Structures in Solution. Science, 2005, 309, 1223-1227.	12.6	230
154	Photodissociation Reaction of 1,2-Diiodoethane in Solution:  A Theoretical and X-ray Diffraction Study. Journal of Physical Chemistry A, 2005, 109, 10451-10458.	2. 5	28
155	Membrane Inlet-based Portable Time-of-flight Mass Spectrometer for Analysis of Air Samples. Bulletin of the Korean Chemical Society, 2005, 26, 303-308.	1.9	8
156	Exploring Fine Structures of Photoactive Yellow Protein in Solution Using Wide-Angle X-ray Scattering. Bulletin of the Korean Chemical Society, 2004, 25, 1676-1680.	1.9	3
157	Diffusion-Limited Extraction of Organic Ions by a Track-Membrane Interfaced Vacuum Inlet. European Journal of Mass Spectrometry, 2003, 9, 187-193.	1.0	4
158	Avoided Curve Crossing between the A1 and B1 States in CF2Br2 Photolysis at 234 and 265 nm. Journal of Physical Chemistry A, 2001, 105, 5606-5612.	2.5	36
159	Photodissociation dynamics of CF3Br at 234 nm: An implication of symmetry reduction during photodissociation. Journal of Chemical Physics, 2001, 115, 10745-10752.	3.0	46