Emilio J GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6978205/publications.pdf

Version: 2024-02-01

80 2,772 34 49
papers citations h-index g-index

81 81 81 1616
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	An integrated approach for sustainable valorization of winery wastewater using bio-based solvents for recovery of natural antioxidants. Journal of Cleaner Production, 2022, 334, 130181.	4.6	19
2	A pathway to improve detoxification processes by selective extraction of phenols and sugars from aqueous media using sustainable solvents. Separation and Purification Technology, 2022, 299, 121675.	3.9	5
3	Hydrophobic eutectic solvents for extraction of natural phenolic antioxidants from winery wastewater. Separation and Purification Technology, 2021, 254, 117590.	3.9	41
4	Comparison of different processing routes for the valorisation of olive tree pruning wastes. Computer Aided Chemical Engineering, 2021, , 1949-1954.	0.3	2
5	Sustainable Recovery of High Added-Value Vanilla Compounds from Wastewater Using Green Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 4850-4862.	3 . 2	18
6	Evaluation of bio-based solvents for phenolic acids extraction from aqueous matrices. Journal of Molecular Liquids, 2021, 338, 116930.	2.3	17
7	Teaching chemical engineering using Jupyter notebook: Problem generators and lecturing tools. Education for Chemical Engineers, 2021, 37, 1-10.	2.8	11
8	Motivational Active Learning in Chemical Engineering. Computer Aided Chemical Engineering, 2020, , 2017-2022.	0.3	3
9	Overview of neoteric solvents as extractants in food industry: A focus on phenolic compounds separation from liquid streams. Food Research International, 2020, 136, 109558.	2.9	43
10	Enhancing aqueous systems fermentability using hydrophobic eutectic solvents as extractans of inhibitory compounds. Separation and Purification Technology, 2020, 250, 117184.	3.9	20
11	Role of the cation on the liquid extraction of levulinic acid from water using NTf2-based ionic liquids: Experimental data and computational analysis. Journal of Molecular Liquids, 2020, 302, 112561.	2.3	6
12	Reprint of: Motivational active learning: An integrated approach to teaching and learning process control. Education for Chemical Engineers, 2019, 26, 8-13.	2.8	14
13	A simple and reliable procedure to accurately estimate NRTL interaction parameters from liquid-liquid equilibrium data. Chemical Engineering Science, 2019, 193, 370-378.	1.9	17
14	On the behavior of imidazolium versus pyrrolidinium ionic liquids as extractants of phenolic compounds from water: Experimental and computational analysis. Separation and Purification Technology, 2018, 201, 214-222.	3.9	55
15	A virtual lab as a complement to traditional hands-on labs: Characterization of an alkaline electrolyzer for hydrogen production. Education for Chemical Engineers, 2018, 23, 7-17.	2.8	17
16	On the volatility of aromatic hydrocarbons in ionic liquids: Vapor-liquid equilibrium measurements and theoretical analysis. Journal of Molecular Liquids, 2018, 250, 9-18.	2.3	13
17	Active Learning of Process Control. Computer Aided Chemical Engineering, 2018, 43, 1693-1698.	0.3	0
18	COSMO-derived descriptors applied in ionic liquids physical property modelling using machine learning algorithms. Computer Aided Chemical Engineering, 2018, 43, 121-126.	0.3	4

#	Article	IF	CITATIONS
19	Motivational active learning: An integrated approach to teaching and learning process control. Education for Chemical Engineers, 2018, 24, 7-12.	2.8	38
20	Deepening of the Role of Cation Substituents on the Extractive Ability of Pyridinium Ionic Liquids of N-Compounds from Fuels. ACS Sustainable Chemistry and Engineering, 2017, 5, 2015-2025.	3.2	22
21	Mutual Solubility of Aromatic Hydrocarbons in Pyrrolidinium and Ammonium-Based Ionic Liquids and Its Modeling Using the Cubic-Plus-Association (CPA) Equation of State. Journal of Chemical & Engineering Data, 2017, 62, 633-642.	1.0	9
22	Selection of a minimum toxicity and high performance ionic liquid mixture for the separation of aromatic - aliphatic mixtures by extractive distillation. Computer Aided Chemical Engineering, 2017, 40, 2209-2214.	0.3	7
23	lonic liquids as entrainers for the separation of aromatic–aliphatic hydrocarbon mixtures by extractive distillation. Chemical Engineering Research and Design, 2016, 115, 382-393.	2.7	62
24	A comparative study of pure ionic liquids and their mixtures as potential mass agents in the separation of hydrocarbons. Journal of Molecular Liquids, 2016, 222, 118-124.	2.3	16
25	Vapor–Liquid Equilibria of <i>n</i> -Heptane + Toluene +1-Ethyl-4-methylpyridinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid. Journal of Chemical & Engineering Data, 2016, 61, 458-465.	1.0	11
26	Selective recovery of aliphatics from aromatics in the presence of the {[4empy][Tf 2 N] + [emim][DCA]} ionic liquid mixture. Journal of Chemical Thermodynamics, 2016, 96, 134-142.	1.0	33
27	Vapor–liquid equilibria of {n-heptane+toluene+[emim][DCA]} system by headspace gas chromatography. Fluid Phase Equilibria, 2015, 387, 209-216.	1.4	47
28	Solubility, density and excess molar volume of binary mixtures of aromatic compounds and common ionic liquids at <i>T</i> \hat{A} = \hat{A} 283.15 \hat{A} K and atmospheric pressure. Physics and Chemistry of Liquids, 2015, 53, 419-428.	0.4	9
29	Separation of BTEX from a naphtha feed to ethylene crackers using a binary mixture of [4empy][Tf2N] and [emim][DCA] ionic liquids. Separation and Purification Technology, 2015, 144, 54-62.	3.9	35
30	Dearomatization of pyrolysis gasolines from mild and severe cracking by liquid–liquid extraction using a binary mixture of [4empy][Tf2N] and [emim][DCA] ionic liquids. Fuel Processing Technology, 2015, 137, 269-282.	3.7	33
31	Effect of the relative humidity and isomeric structure on the physical properties of pyridinium based-ionic liquids. Journal of Chemical Thermodynamics, 2015, 86, 96-105.	1.0	22
32	Extractive denitrogenation of model oils with tetraalkyl substituted pyridinium based ionic liquids. Fluid Phase Equilibria, 2015, 396, 66-73.	1.4	26
33	Use of selective ionic liquids and ionic liquid/salt mixtures as entrainer in a (vapor + liquid) system to separate n -heptane from toluene. Journal of Chemical Thermodynamics, 2015, 91, 156-164.	1.0	21
34	Application of a group contribution equation of state to model the phase behavior of mixtures containing alkanes and ionic liquids. Fluid Phase Equilibria, 2015, 387, 32-37.	1.4	3
35	Physical properties of the pure 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid and its binary mixtures with alcohols. Journal of Chemical Thermodynamics, 2014, 68, 109-116.	1.0	34
36	Liquid–liquid equilibria of binary systems {benzene+[x-Mim][NTf2] ionic liquid}: Experimental data and thermodynamic modeling using a group contribution equation of state. Fluid Phase Equilibria, 2014, 362, 163-169.	1.4	13

#	Article	IF	CITATIONS
37	Effect of the number, position and length of alkyl chains on the physical properties of polysubstituted pyridinium ionic liquids. Journal of Chemical Thermodynamics, 2014, 69, 19-26.	1.0	36
38	Influence of the number, position and length of the alkyl-substituents on the solubility of water in pyridinium-based ionic liquids. Fluid Phase Equilibria, 2014, 383, 72-77.	1.4	11
39	Phase behavior of ternary mixtures {aliphatic hydrocarbon+aromatic hydrocarbon+ionic liquid}: Experimental LLE data and their modeling by COSMO-RS. Journal of Chemical Thermodynamics, 2014, 77, 222-229.	1.0	34
40	Osmotic coefficients and apparent molar volumes of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in alcohols. Journal of Chemical Thermodynamics, 2014, 69, 93-100.	1.0	15
41	Liquid extraction of aromatic/cyclic aliphatic hydrocarbon mixtures using ionic liquids as solvent: Literature review and new experimental LLE data. Fuel Processing Technology, 2014, 125, 207-216.	3.7	45
42	Effect of the temperature on the physical properties of the pure ionic liquid 1-ethyl-3-methylimidazolium methylsulfate and characterization of its binary mixtures with alcohols. Journal of Chemical Thermodynamics, 2014, 74, 193-200.	1.0	44
43	Phase equilibria of binary mixtures (ionic liquid+aromatic hydrocarbon): Effect of the structure of the components on the solubility. Fluid Phase Equilibria, 2013, 360, 416-422.	1.4	14
44	Thermophysical Properties of the Pure Ionic Liquid 1-Butyl-1-methylpyrrolidinium Dicyanamide and Its Binary Mixtures with Alcohols. Journal of Chemical & Engineering Data, 2013, 58, 1440-1448.	1.0	66
45	Thermodynamic Equilibrium of Xylene Isomerization in the Liquid Phase. Journal of Chemical & Engineering Data, 2013, 58, 1425-1428.	1.0	17
46	Physical Properties of Binary AlcoholÂ+Âlonic Liquid Mixtures at Several Temperatures and Atmospheric Pressure. Journal of Solution Chemistry, 2013, 42, 746-763.	0.6	26
47	Osmotic and apparent molar properties of binary mixtures alcohol+1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. Journal of Chemical Thermodynamics, 2013, 61, 64-73.	1.0	35
48	Evaluation of [C ₃ mim][NTf ₂] as Solvent for the Liquid-Liquid Extraction of Benzene from Mixtures of Benzene and Hexane. Separation Science and Technology, 2012, 47, 331-336.	1.3	6
49	Influence of the Structure of the Cation of Ionic Liquids on the Vapor Pressure and Osmotic Coefficients in their Binary Mixtures with 1-Propanol. Procedia Engineering, 2012, 42, 1053-1060.	1.2	2
50	Physical and Excess Properties for Binary Systems Containing an Alcohol and Ionic Liquid at T = 298.15K. Procedia Engineering, 2012, 42, 1383-1389.	1.2	5
51	1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids as solvents in the separation of azeotropic mixtures. Journal of Chemical Thermodynamics, 2012, 53, 152-157.	1.0	43
52	Physical and Excess Properties of Eight Binary Mixtures Containing Water and Ionic Liquids. Journal of Chemical & Engineering Data, 2012, 57, 2165-2176.	1.0	80
53	Temperature Dependence and Structural Influence on the Thermophysical Properties of Eleven Commercial Ionic Liquids. Industrial & Engineering Chemistry Research, 2012, 51, 2492-2504.	1.8	171
54	Excess properties of binary mixtures containing 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid and polar organic compounds. Journal of Chemical Thermodynamics, 2012, 47, 300-311.	1.0	52

#	Article	IF	CITATIONS
55	(Liquid + liquid) equilibria for the ternary mixtures (alkane + toluene + ionic liquid) at T= 298.15 K: Influence of the anion on the phase equilibria. Journal of Chemical Thermodynamics, 2012, 47, 402-407.	1.0	26
56	Acoustic, volumetric and osmotic properties of binary mixtures containing the ionic liquid 1-butyl-3-methylimidazolium dicyanamide mixed with primary and secondary alcohols. Journal of Chemical Thermodynamics, 2012, 50, 19-29.	1.0	35
57	Application of [HMim][NTf2], [HMim][TfO] and [BMim][TfO] ionic liquids on the extraction of toluene from alkanes: Effect of the anion and the alkyl chain length of the cation on the LLE. Journal of Chemical Thermodynamics, 2012, 53, 60-66.	1.0	56
58	Synthesis and characterization of new polysubstituted pyridinium-based ionic liquids: application as solvents on desulfurization of fuel oils. Green Chemistry, 2011, 13, 2768.	4.6	51
59	Extraction of Benzene from Aliphatic Compounds Using Commercial Ionic Liquids as Solvents: Study of the Liquid–Liquid Equilibrium at <i>T</i> = 298.15 K. Journal of Chemical & Engineering Data, 2011, 56, 3376-3383.	1.0	44
60	Extraction of toluene from aliphatic compounds using an ionic liquid as solvent: Influence of the alkane on the (liquid+liquid) equilibrium. Journal of Chemical Thermodynamics, 2011, 43, 562-568.	1.0	39
61	Application of [EMim] [ESO4] ionic liquid as solvent in the extraction of toluene from cycloalkanes: Study of liquid–liquid equilibria at T=298.15K. Fluid Phase Equilibria, 2011, 303, 174-179.	1.4	31
62	Study of [EMim] [ESO4] ionic liquid as solvent in the liquid–liquid extraction of xylenes from their mixtures with hexane. Fluid Phase Equilibria, 2011, 305, 227-232.	1.4	14
63	(Liquid+liquid) equilibrium data for the ternary systems (cycloalkane+ethylbenzene+1-ethyl-3-methylimidazolim ethylsulfate) at T=298.15K and atmospheric pressure. Journal of Chemical Thermodynamics, 2011, 43, 725-730.	1.0	25
64	Measurement and correlation of liquid–liquid equilibria for ternary systems {cyclooctane+aromatic hydrocarbon+1-ethyl-3-methylpyridinium ethylsulfate} at T=298.15K and atmospheric pressure. Fluid Phase Equilibria, 2010, 291, 59-65.	1.4	39
65	Liquid–liquid equilibria for ternary systems of {cyclohexane+aromatic compounds+1-ethyl-3-methylpyridinium ethylsulfate}. Fluid Phase Equilibria, 2010, 296, 213-218.	1.4	39
66	Separation of toluene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at T=298.15K and atmospheric pressure. Journal of Chemical Thermodynamics, 2010, 42, 752-757.	1.0	48
67	Separation of benzene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at several temperatures and atmospheric pressure: Effect of the size of the aliphatic hydrocarbons. Journal of Chemical Thermodynamics, 2010, 42, 104-109.	1.0	68
68	Application of [EMpy] [ESO4] ionic liquid as solvent for the liquid extraction of xylenes from hexane. Fluid Phase Equilibria, 2010, 295, 249-254.	1.4	27
69	Excess properties of binary mixtures hexane, heptane, octane and nonane with benzene, toluene and ethylbenzene at <i>T</i> = 283.15 and 298.15 K. Physics and Chemistry of Liquids, 2010, 48, 514-533.	0.4	43
70	Density, Speed of Sound, and Refractive Index of the Binary Systems Cyclohexane (1) or Methylcyclohexane (1) or Cyclo-octane (1) with Benzene (2), Toluene (2), and Ethylbenzene (2) at Two Temperatures. Journal of Chemical & Description (2), 2010, 55, 1003-1011.	1.0	68
71	Liquidâ^'Liquid Equilibrium for Ternary Mixtures of Hexane + Aromatic Compounds + [EMpy][ESO ₄] at <i>T</i> = 298.15 K. Journal of Chemical & Engineering Data, 2010, 55, 633-638.	1.0	56
72	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with $\langle i \rangle o \langle i \rangle Xy$ lene, $\langle i \rangle m \langle i \rangle Xy$ lene, $\langle i \rangle p \langle i \rangle Xy$ lene, and Mesitylene at $\langle i \rangle T \langle i \rangle = (298.15)$ and 313.15 K. Journal of Chemical & Engineering Data, 2010, 55, 2294-2305.	1.0	53

#	Article	IF	CITATIONS
73	Liquid Extraction of Benzene from Its Mixtures Using 1-Ethyl-3-methylimidazolium Ethylsulfate as a Solvent. Journal of Chemical & Engineering Data, 2010, 55, 4931-4936.	1.0	46
74	Effect of the Chain Length on the Aromatic Ring in the Separation of Aromatic Compounds from Methylcyclohexane Using the Ionic Liquid 1-Ethyl-3-methylpyridinium Ethylsulfate. Journal of Chemical & Engineering Data, 2010, 55, 2289-2293.	1.0	19
75	Separation of Benzene from Linear Alkanes (C $<$ sub $>$ 6 $<$ /sub $>$ â $^{\circ}$ C $<$ sub $>$ 9 $<$ /sub $>$) Using 1-Ethyl-3-Methylimidazolium Ethylsulfate at $<$ i $>$ T $<$ /i $>=$ 298.15 K. Journal of Chemical & Amp; Engineering Data, 2010, 55, 3422-3427.	1.0	43
76	(Liquid+liquid) equilibria for ternary mixtures of (alkane+benzene+[EMpy] [ESO4]) at several temperatures and atmospheric pressure. Journal of Chemical Thermodynamics, 2009, 41, 1215-1221.	1.0	85
77	Density and Viscosity Experimental Data of the Ternary Mixtures 1-Propanol or 2-Propanol + Water + 1-Ethyl-3-methylimidazolium Ethylsulfate. Correlation and Prediction of Physical Properties of the Ternary Systems. Journal of Chemical & Data, 2008, 53, 881-887.	1.0	49
78	Physical Properties of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate with Several Alcohols at $\langle i \rangle T \langle j \rangle = (298.15, 313.15, and 328.15)$ K and Atmospheric Pressure. Journal of Chemical & Chemica	1.0	153
79	Physical Properties of Binary Mixtures of the Ionic Liquid 1-Methyl-3-octylimidazolium Chloride with Methanol, Ethanol, and 1-Propanol atT= (298.15, 313.15, and 328.15) K and atP= 0.1 MPa. Journal of Chemical & Chemical	1.0	166
80	Creativity and Innovation Skills in University STEM Education: The CHET Project Approach., 0,,.		1