List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6978205/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Temperature Dependence and Structural Influence on the Thermophysical Properties of Eleven<br>Commercial Ionic Liquids. Industrial & Engineering Chemistry Research, 2012, 51, 2492-2504.                                                                                               | 3.7 | 171       |
| 2  | Physical Properties of Binary Mixtures of the Ionic Liquid 1-Methyl-3-octylimidazolium Chloride with<br>Methanol, Ethanol, and 1-Propanol atT= (298.15, 313.15, and 328.15) K and atP= 0.1 MPa. Journal of<br>Chemical & Engineering Data, 2006, 51, 1446-1452.                         | 1.9 | 166       |
| 3  | Physical Properties of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate<br>with Several Alcohols at <i>T</i> = (298.15, 313.15, and 328.15) K and Atmospheric Pressure. Journal of<br>Chemical & Engineering Data, 2007, 52, 1641-1648.                    | 1.9 | 153       |
| 4  | (Liquid+liquid) equilibria for ternary mixtures of (alkane+benzene+[EMpy] [ESO4]) at several temperatures and atmospheric pressure. Journal of Chemical Thermodynamics, 2009, 41, 1215-1221.                                                                                            | 2.0 | 85        |
| 5  | Physical and Excess Properties of Eight Binary Mixtures Containing Water and Ionic Liquids. Journal of Chemical & Engineering Data, 2012, 57, 2165-2176.                                                                                                                                | 1.9 | 80        |
| 6  | Separation of benzene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at<br>several temperatures and atmospheric pressure: Effect of the size of the aliphatic hydrocarbons.<br>Journal of Chemical Thermodynamics, 2010, 42, 104-109.                          | 2.0 | 68        |
| 7  | Density, Speed of Sound, and Refractive Index of the Binary Systems Cyclohexane (1) or<br>Methylcyclohexane (1) or Cyclo-octane (1) with Benzene (2), Toluene (2), and Ethylbenzene (2) at Two<br>Temperatures. Journal of Chemical & Engineering Data, 2010, 55, 1003-1011.            | 1.9 | 68        |
| 8  | Thermophysical Properties of the Pure Ionic Liquid 1-Butyl-1-methylpyrrolidinium Dicyanamide and Its<br>Binary Mixtures with Alcohols. Journal of Chemical & Engineering Data, 2013, 58, 1440-1448.                                                                                     | 1.9 | 66        |
| 9  | Ionic liquids as entrainers for the separation of aromatic–aliphatic hydrocarbon mixtures by extractive distillation. Chemical Engineering Research and Design, 2016, 115, 382-393.                                                                                                     | 5.6 | 62        |
| 10 | Liquidâ^'Liquid Equilibrium for Ternary Mixtures of Hexane + Aromatic Compounds +<br>[EMpy][ESO <sub>4</sub> ] at <i>T</i> = 298.15 K. Journal of Chemical & Engineering Data, 2010, 55,<br>633-638.                                                                                    | 1.9 | 56        |
| 11 | Application of [HMim][NTf2], [HMim][TfO] and [BMim][TfO] ionic liquids on the extraction of toluene<br>from alkanes: Effect of the anion and the alkyl chain length of the cation on the LLE. Journal of<br>Chemical Thermodynamics, 2012, 53, 60-66.                                   | 2.0 | 56        |
| 12 | On the behavior of imidazolium versus pyrrolidinium ionic liquids as extractants of phenolic compounds from water: Experimental and computational analysis. Separation and Purification Technology, 2018, 201, 214-222.                                                                 | 7.9 | 55        |
| 13 | Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with<br><i>o</i> -Xylene, <i>m</i> -Xylene, <i>p</i> -Xylene, and Mesitylene at <i>T</i> = (298.15 and 313.15) K.<br>Journal of Chemical & Engineering Data, 2010, 55, 2294-2305.             | 1.9 | 53        |
| 14 | Excess properties of binary mixtures containing 1-hexyl-3-methylimidazolium<br>bis(trifluoromethylsulfonyl)imide ionic liquid and polar organic compounds. Journal of Chemical<br>Thermodynamics, 2012, 47, 300-311.                                                                    | 2.0 | 52        |
| 15 | Synthesis and characterization of new polysubstituted pyridinium-based ionic liquids: application as solvents on desulfurization of fuel oils. Green Chemistry, 2011, 13, 2768.                                                                                                         | 9.0 | 51        |
| 16 | Density and Viscosity Experimental Data of the Ternary Mixtures 1-Propanol or 2-Propanol + Water +<br>1-Ethyl-3-methylimidazolium Ethylsulfate. Correlation and Prediction of Physical Properties of the<br>Ternary Systems. Journal of Chemical & Engineering Data, 2008, 53, 881-887. | 1.9 | 49        |
| 17 | Separation of toluene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at T=298.15K and atmospheric pressure. Journal of Chemical Thermodynamics, 2010, 42, 752-757.                                                                                             | 2.0 | 48        |
| 18 | Vapor–liquid equilibria of {n-heptane+toluene+[emim][DCA]} system by headspace gas chromatography. Fluid Phase Equilibria, 2015, 387, 209-216.                                                                                                                                          | 2.5 | 47        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Liquid Extraction of Benzene from Its Mixtures Using 1-Ethyl-3-methylimidazolium Ethylsulfate as a<br>Solvent. Journal of Chemical & Engineering Data, 2010, 55, 4931-4936.                                                                     | 1.9 | 46        |
| 20 | Liquid extraction of aromatic/cyclic aliphatic hydrocarbon mixtures using ionic liquids as solvent:<br>Literature review and new experimental LLE data. Fuel Processing Technology, 2014, 125, 207-216.                                         | 7.2 | 45        |
| 21 | Extraction of Benzene from Aliphatic Compounds Using Commercial Ionic Liquids as Solvents: Study<br>of the Liquid–Liquid Equilibrium at <i>T</i> = 298.15 K. Journal of Chemical & Engineering Data,<br>2011, 56, 3376-3383.                    | 1.9 | 44        |
| 22 | Effect of the temperature on the physical properties of the pure ionic liquid<br>1-ethyl-3-methylimidazolium methylsulfate and characterization of its binary mixtures with alcohols.<br>Journal of Chemical Thermodynamics, 2014, 74, 193-200. | 2.0 | 44        |
| 23 | Excess properties of binary mixtures hexane, heptane, octane and nonane with benzene, toluene and ethylbenzene at <i>T</i> = 283.15 and 298.15 K. Physics and Chemistry of Liquids, 2010, 48, 514-533.                                          | 1.2 | 43        |
| 24 | Separation of Benzene from Linear Alkanes (C <sub>6</sub> â^'C <sub>9</sub> ) Using<br>1-Ethyl-3-Methylimidazolium Ethylsulfate at <i>T</i> = 298.15 K. Journal of Chemical & Engineering<br>Data, 2010, 55, 3422-3427.                         | 1.9 | 43        |
| 25 | 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids as solvents in the separation of azeotropic mixtures. Journal of Chemical Thermodynamics, 2012, 53, 152-157.                                                        | 2.0 | 43        |
| 26 | Overview of neoteric solvents as extractants in food industry: A focus on phenolic compounds separation from liquid streams. Food Research International, 2020, 136, 109558.                                                                    | 6.2 | 43        |
| 27 | Hydrophobic eutectic solvents for extraction of natural phenolic antioxidants from winery wastewater. Separation and Purification Technology, 2021, 254, 117590.                                                                                | 7.9 | 41        |
| 28 | Measurement and correlation of liquid–liquid equilibria for ternary systems {cyclooctane+aromatic<br>hydrocarbon+1-ethyl-3-methylpyridinium ethylsulfate} at T=298.15K and atmospheric pressure. Fluid<br>Phase Equilibria, 2010, 291, 59-65.   | 2.5 | 39        |
| 29 | Liquid–liquid equilibria for ternary systems of {cyclohexane+aromatic<br>compounds+1-ethyl-3-methylpyridinium ethylsulfate}. Fluid Phase Equilibria, 2010, 296, 213-218.                                                                        | 2.5 | 39        |
| 30 | Extraction of toluene from aliphatic compounds using an ionic liquid as solvent: Influence of the alkane on the (liquid+liquid) equilibrium. Journal of Chemical Thermodynamics, 2011, 43, 562-568.                                             | 2.0 | 39        |
| 31 | Motivational active learning: An integrated approach to teaching and learning process control.<br>Education for Chemical Engineers, 2018, 24, 7-12.                                                                                             | 4.8 | 38        |
| 32 | Effect of the number, position and length of alkyl chains on the physical properties of polysubstituted pyridinium ionic liquids. Journal of Chemical Thermodynamics, 2014, 69, 19-26.                                                          | 2.0 | 36        |
| 33 | Acoustic, volumetric and osmotic properties of binary mixtures containing the ionic liquid<br>1-butyl-3-methylimidazolium dicyanamide mixed with primary and secondary alcohols. Journal of<br>Chemical Thermodynamics, 2012, 50, 19-29.        | 2.0 | 35        |
| 34 | Osmotic and apparent molar properties of binary mixtures alcohol+1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. Journal of Chemical Thermodynamics, 2013, 61, 64-73.                                                       | 2.0 | 35        |
| 35 | Separation of BTEX from a naphtha feed to ethylene crackers using a binary mixture of [4empy][Tf2N] and [emim][DCA] ionic liquids. Separation and Purification Technology, 2015, 144, 54-62.                                                    | 7.9 | 35        |
| 36 | Physical properties of the pure 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid and its binary mixtures with alcohols. Journal of Chemical Thermodynamics, 2014, 68, 109-116.                                     | 2.0 | 34        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Phase behavior of ternary mixtures {aliphatic hydrocarbon+aromatic hydrocarbon+ionic liquid}:<br>Experimental LLE data and their modeling by COSMO-RS. Journal of Chemical Thermodynamics, 2014, 77,<br>222-229.                                  | 2.0 | 34        |
| 38 | Dearomatization of pyrolysis gasolines from mild and severe cracking by liquid–liquid extraction<br>using a binary mixture of [4empy][Tf2N] and [emim][DCA] ionic liquids. Fuel Processing Technology,<br>2015, 137, 269-282.                     | 7.2 | 33        |
| 39 | Selective recovery of aliphatics from aromatics in the presence of the {[4empy][Tf 2 N] + [emim][DCA]}<br>ionic liquid mixture. Journal of Chemical Thermodynamics, 2016, 96, 134-142.                                                            | 2.0 | 33        |
| 40 | Application of [EMim][ESO4] ionic liquid as solvent in the extraction of toluene from cycloalkanes:<br>Study of liquid–liquid equilibria at T=298.15K. Fluid Phase Equilibria, 2011, 303, 174-179.                                                | 2.5 | 31        |
| 41 | Application of [EMpy][ESO4] ionic liquid as solvent for the liquid extraction of xylenes from hexane.<br>Fluid Phase Equilibria, 2010, 295, 249-254.                                                                                              | 2.5 | 27        |
| 42 | (Liquid + liquid) equilibria for the ternary mixtures (alkane + toluene + ionic liquid) at T= 298.15 K:<br>Influence of the anion on the phase equilibria. Journal of Chemical Thermodynamics, 2012, 47, 402-407.                                 | 2.0 | 26        |
| 43 | Physical Properties of Binary AlcoholÂ+Âlonic Liquid Mixtures at Several Temperatures and Atmospheric<br>Pressure. Journal of Solution Chemistry, 2013, 42, 746-763.                                                                              | 1.2 | 26        |
| 44 | Extractive denitrogenation of model oils with tetraalkyl substituted pyridinium based ionic liquids.<br>Fluid Phase Equilibria, 2015, 396, 66-73.                                                                                                 | 2.5 | 26        |
| 45 | (Liquid+liquid) equilibrium data for the ternary systems<br>(cycloalkane+ethylbenzene+1-ethyl-3-methylimidazolim ethylsulfate) at T=298.15K and atmospheric<br>pressure. Journal of Chemical Thermodynamics, 2011, 43, 725-730.                   | 2.0 | 25        |
| 46 | Effect of the relative humidity and isomeric structure on the physical properties of pyridinium based-ionic liquids. Journal of Chemical Thermodynamics, 2015, 86, 96-105.                                                                        | 2.0 | 22        |
| 47 | Deepening of the Role of Cation Substituents on the Extractive Ability of Pyridinium Ionic Liquids of N-Compounds from Fuels. ACS Sustainable Chemistry and Engineering, 2017, 5, 2015-2025.                                                      | 6.7 | 22        |
| 48 | Use of selective ionic liquids and ionic liquid/salt mixtures as entrainer in a (vapor + liquid) system to separate n -heptane from toluene. Journal of Chemical Thermodynamics, 2015, 91, 156-164.                                               | 2.0 | 21        |
| 49 | Enhancing aqueous systems fermentability using hydrophobic eutectic solvents as extractans of inhibitory compounds. Separation and Purification Technology, 2020, 250, 117184.                                                                    | 7.9 | 20        |
| 50 | Effect of the Chain Length on the Aromatic Ring in the Separation of Aromatic Compounds from<br>Methylcyclohexane Using the Ionic Liquid 1-Ethyl-3-methylpyridinium Ethylsulfate. Journal of Chemical<br>& Engineering Data, 2010, 55, 2289-2293. | 1.9 | 19        |
| 51 | An integrated approach for sustainable valorization of winery wastewater using bio-based solvents for recovery of natural antioxidants. Journal of Cleaner Production, 2022, 334, 130181.                                                         | 9.3 | 19        |
| 52 | Sustainable Recovery of High Added-Value Vanilla Compounds from Wastewater Using Green Solvents.<br>ACS Sustainable Chemistry and Engineering, 2021, 9, 4850-4862.                                                                                | 6.7 | 18        |
| 53 | Thermodynamic Equilibrium of Xylene Isomerization in the Liquid Phase. Journal of Chemical &<br>Engineering Data, 2013, 58, 1425-1428.                                                                                                            | 1.9 | 17        |
| 54 | A virtual lab as a complement to traditional hands-on labs: Characterization of an alkaline electrolyzer for hydrogen production. Education for Chemical Engineers, 2018, 23, 7-17.                                                               | 4.8 | 17        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A simple and reliable procedure to accurately estimate NRTL interaction parameters from liquid-liquid equilibrium data. Chemical Engineering Science, 2019, 193, 370-378.                                                                | 3.8 | 17        |
| 56 | Evaluation of bio-based solvents for phenolic acids extraction from aqueous matrices. Journal of Molecular Liquids, 2021, 338, 116930.                                                                                                   | 4.9 | 17        |
| 57 | A comparative study of pure ionic liquids and their mixtures as potential mass agents in the separation of hydrocarbons. Journal of Molecular Liquids, 2016, 222, 118-124.                                                               | 4.9 | 16        |
| 58 | Osmotic coefficients and apparent molar volumes of 1-hexyl-3-methylimidazolium<br>trifluoromethanesulfonate ionic liquid in alcohols. Journal of Chemical Thermodynamics, 2014, 69,<br>93-100.                                           | 2.0 | 15        |
| 59 | Study of [EMim][ESO4] ionic liquid as solvent in the liquid–liquid extraction of xylenes from their<br>mixtures with hexane. Fluid Phase Equilibria, 2011, 305, 227-232.                                                                 | 2.5 | 14        |
| 60 | Phase equilibria of binary mixtures (ionic liquid+aromatic hydrocarbon): Effect of the structure of the components on the solubility. Fluid Phase Equilibria, 2013, 360, 416-422.                                                        | 2.5 | 14        |
| 61 | Reprint of: Motivational active learning: An integrated approach to teaching and learning process control. Education for Chemical Engineers, 2019, 26, 8-13.                                                                             | 4.8 | 14        |
| 62 | Liquid–liquid equilibria of binary systems {benzene+[x-Mim][NTf2] ionic liquid}: Experimental data and<br>thermodynamic modeling using a group contribution equation of state. Fluid Phase Equilibria, 2014,<br>362, 163-169.            | 2.5 | 13        |
| 63 | On the volatility of aromatic hydrocarbons in ionic liquids: Vapor-liquid equilibrium measurements and theoretical analysis. Journal of Molecular Liquids, 2018, 250, 9-18.                                                              | 4.9 | 13        |
| 64 | Influence of the number, position and length of the alkyl-substituents on the solubility of water in pyridinium-based ionic liquids. Fluid Phase Equilibria, 2014, 383, 72-77.                                                           | 2.5 | 11        |
| 65 | Vapor–Liquid Equilibria of <i>n</i> -Heptane + Toluene +1-Ethyl-4-methylpyridinium<br>Bis(trifluoromethylsulfonyl)imide Ionic Liquid. Journal of Chemical & Engineering Data, 2016, 61,<br>458-465.                                      | 1.9 | 11        |
| 66 | Teaching chemical engineering using Jupyter notebook: Problem generators and lecturing tools.<br>Education for Chemical Engineers, 2021, 37, 1-10.                                                                                       | 4.8 | 11        |
| 67 | Solubility, density and excess molar volume of binary mixtures of aromatic compounds and common<br>ionic liquids at <i>T</i> Â=Â283.15ÂK and atmospheric pressure. Physics and Chemistry of Liquids, 2015, 53,<br>419-428.               | 1.2 | 9         |
| 68 | Mutual Solubility of Aromatic Hydrocarbons in Pyrrolidinium and Ammonium-Based Ionic Liquids and<br>Its Modeling Using the Cubic-Plus-Association (CPA) Equation of State. Journal of Chemical &<br>Engineering Data, 2017, 62, 633-642. | 1.9 | 9         |
| 69 | Selection of a minimum toxicity and high performance ionic liquid mixture for the separation of aromatic - aliphatic mixtures by extractive distillation. Computer Aided Chemical Engineering, 2017, 40, 2209-2214.                      | O.5 | 7         |
| 70 | Evaluation of [C <sub>3</sub> mim][NTf <sub>2</sub> ] as Solvent for the Liquid-Liquid Extraction of<br>Benzene from Mixtures of Benzene and Hexane. Separation Science and Technology, 2012, 47, 331-336.                               | 2.5 | 6         |
| 71 | Role of the cation on the liquid extraction of levulinic acid from water using NTf2-based ionic<br>liquids: Experimental data and computational analysis. Journal of Molecular Liquids, 2020, 302, 112561.                               | 4.9 | 6         |
| 72 | Physical and Excess Properties for Binary Systems Containing an Alcohol and Ionic Liquid at T = 298.15K. Procedia Engineering, 2012, 42, 1383-1389.                                                                                      | 1.2 | 5         |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A pathway to improve detoxification processes by selective extraction of phenols and sugars from aqueous media using sustainable solvents. Separation and Purification Technology, 2022, 299, 121675. | 7.9 | 5         |
| 74 | COSMO-derived descriptors applied in ionic liquids physical property modelling using machine learning algorithms. Computer Aided Chemical Engineering, 2018, 43, 121-126.                             | 0.5 | 4         |
| 75 | Application of a group contribution equation of state to model the phase behavior of mixtures containing alkanes and ionic liquids. Fluid Phase Equilibria, 2015, 387, 32-37.                         | 2.5 | 3         |
| 76 | Motivational Active Learning in Chemical Engineering. Computer Aided Chemical Engineering, 2020, , 2017-2022.                                                                                         | 0.5 | 3         |
| 77 | Influence of the Structure of the Cation of Ionic Liquids on the Vapor Pressure and Osmotic<br>Coefficients in their Binary Mixtures with 1-Propanol. Procedia Engineering, 2012, 42, 1053-1060.      | 1.2 | 2         |
| 78 | Comparison of different processing routes for the valorisation of olive tree pruning wastes.<br>Computer Aided Chemical Engineering, 2021, , 1949-1954.                                               | 0.5 | 2         |
| 79 | Creativity and Innovation Skills in University STEM Education: The CHET Project Approach. , 0, , .                                                                                                    |     | 1         |
| 80 | Active Learning of Process Control. Computer Aided Chemical Engineering, 2018, 43, 1693-1698.                                                                                                         | 0.5 | 0         |