Ping Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6977971/publications.pdf

Version: 2024-02-01

73	912 citations	430874 18 h-index	580821 25 g-index
papers	Citations	II-IIIQEX	g-mdex
73 all docs	73 docs citations	73 times ranked	557 citing authors

#	Article	IF	CITATIONS
1	Effect of texture and grain size on the magnetic flux density and core loss of cold-rolled high silicon steel sheets. Journal of Magnetism and Magnetic Materials, 2015, 393, 537-543.	2.3	62
2	Influences of Thermal Martensites and Grain Orientations on Strain-induced Martensites in High Manganese TRIP/TWIP Steels. Journal of Materials Science and Technology, 2011, 27, 257-265.	10.7	46
3	{001}ã€^120〉â^'{113}ã€^361〉 recrystallization textures induced by initial {001} grains and related micro evolution in heavily rolled electrical steel. Materials Characterization, 2016, 119, 225-232.	ostructure 4.4	37
4	Crystallographic orientation and spatially resolved damage in a dispersion-hardened Al alloy. Acta Materialia, 2020, 193, 138-150.	7.9	33
5	Formation of {100} textured columnar grain structure in a non-oriented electrical steel by phase transformation. Journal of Magnetism and Magnetic Materials, 2014, 356, 1-4.	2.3	32
6	Microstructure and texture evolution in a non-oriented electrical steel during î³â†'î± transformation under various atmosphere conditions. Journal of Magnetism and Magnetic Materials, 2015, 374, 655-662.	2.3	29
7	Formability of TRIP/TWIP Steel Containing Manganese of 18.8%. Journal of Iron and Steel Research International, 2011, 18, 36-40.	2.8	28
8	Transformation of {100} texture induced by surface effect in ultra-low carbon electrical steel. Journal of Materials Science, 2016, 51, 8087-8097.	3.7	23
9	Through process texture evolution of new thin-gauge non-oriented electrical steels with high permeability. Journal of Magnetism and Magnetic Materials, 2016, 397, 125-131.	2.3	23
10	Analysis of Micro-texture during Secondary Recrystallization in a Hi-B Electrical Steel. Journal of Materials Science and Technology, 2011, 27, 1065-1071.	10.7	22
11	Effect of hot deformation of austenite on martensitic transformation in high manganese steel. Journal of Alloys and Compounds, 2013, 558, 26-33.	5.5	22
12	Cube texture evolution and magnetic properties of 6.5†wt% Si electrical steel fabricated by surface energy and three-stage rolling method. Journal of Magnetism and Magnetic Materials, 2018, 457, 38-45.	2.3	22
13	Dependence of Deformation Twinning on Grain Orientation and Texture Evolution of High Manganese TWIP Steels at Different Deformation Temperatures. Journal of Iron and Steel Research International, 2011, 18, 46-52.	2.8	21
14	Influence of deformation on precipitation in AZ80 magnesium alloy. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 338-343.	4.9	21
15	Effect of rolling methods on microstructure, recrystallization texture and magnetic properties in a Fe–2.5%Si–0.52%Al non-oriented electrical steel. Materials Characterization, 2015, 108, 85-93.	4.4	20
16	Retaining $\{100\}$ texture from initial columnar grains in 6.5 wt% Si electrical steels. Journal of Magnetism and Magnetic Materials, 2017, 441, 511-516.	2.3	19
17	Formation of cube texture affected by neighboring grains in a transverse-directionally aligned columnar-grained electrical steel. Materials Letters, 2013, 93, 363-365.	2.6	18
18	Strain-induced α-to-β phase transformation during hot compression in Tiâ^'5Alâ^'5Moâ^'5Vâ^'1Crâ^'1Fe alloy. Transactions of Nonferrous Metals Society of China, 2019, 29, 296-304.	4.2	18

#	Article	IF	CITATIONS
19	BEHAVIORS OF BRASS TEXTURE AND ITS INFLUENCE ON GOSS TEXTURE IN GRAIN ORIENTED ELECTRICAL STEELS. Jinshu Xuebao/Acta Metallurgica Sinica, 2012, 48, 16.	0.3	18
20	Effect of {110}<229> and {110}<112> Grains on Texture Evolution during Cold Rolling and Annealing of Electrical Steel. ISIJ International, 2016, 56, 1462-1469.	1.4	17
21	INFLUENCE OF COLUMNAR GRAINS ON THE RECRYSTALLIZATION TEXTURE EVOLUTION IN Fe-3%Si ELECTRICAL STEEL. Jinshu Xuebao/Acta Metallurgica Sinica, 2012, 48, 307.	0.3	17
22	Preparation of non-oriented silicon steel with high magnetic induction using columnar grains. Journal of Magnetism and Magnetic Materials, 2012, 324, 4068-4072.	2.3	16
23	Correlation between Primary and Secondary Recrystallization Texture Components in Low-temperature Reheated Grain-oriented Silicon Steel. Journal of Iron and Steel Research International, 2016, 23, 1234-1242.	2.8	16
24	Orientation Dependence of Martensitic Transformation in High Mn TRIP/TWIP Steels. Steel Research International, 2012, 83, 368-373.	1.8	15
25	Opposite Relationship between Orientation Selection and Texture Memory in the Deformed Electrical Steel Sheets during αâ†'γâ†'α Transformation. Journal of Materials Science and Technology, 2017, 33, 1522-1530	0 ^{10.7}	15
26	MICROSTRUCTURE, MECHANICAL PROPERTIES AND CRYSTALLOGRAPHY ANALYSIS OF Fe-22Mn TRIP/TWIP STEEL AFTER TENSILE DEFORMATION. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 1.	0.3	15
27	Effect of Initial Goss Texture Sharpness on Texture Evolution and Magnetic Properties of Ultra-thin Grain-oriented Electrical Steel. Acta Metallurgica Sinica (English Letters), 2017, 30, 895-906.	2.9	14
28	In-situ neutron diffraction investigation on the martensite transformation, texture evolution and martensite reversion in high manganese TRIP steel. Materials Characterization, 2020, 163, 110244.	4.4	14
29	Influence of structure transition on plastic behaviors of iron based ordered alloys. Science China Technological Sciences, 2012, 55, 2920-2925.	4.0	13
30	Interaction among deformation, recrystallization and phase transformation of TA2 pure titanium during hot compression. Transactions of Nonferrous Metals Society of China, 2016, 26, 1863-1870.	4.2	13
31	INFLUENCE OF COLUMNAR GRAINS ON THE COLD ROLLING TEXTURE EVOLUTION IN Fe-3%Si ELECTRICAL STEEL. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 48, 782-788.	0.3	13
32	Relationship between the initial {100} textures and the shear textures developed in sheet surface during hot rolling of non-oriented silicon steel. Materials Characterization, 2021, 182, 111534.	4.4	13
33	Analysis of the Transformation-induced Plasticity Effect during the Dynamic Deformation of High-manganese Steel. Journal of Materials Science and Technology, 2015, 31, 191-198.	10.7	11
34	Texture Evolution of Columnar Grains in Electrical Steel During Hot Rolling. Journal of Iron and Steel Research International, 2013, 20, 99-106.	2.8	10
35	Influences of initial microstructures on martensitic transformation and textures during cold rolling and tensile mechanical properties in high manganese TRIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 829, 142147.	5.6	10
36	Crystallographic orientation and spatially resolved damage for polycrystalline deformation of a high manganese steel. Acta Materialia, 2022, 226, 117628.	7.9	10

#	Article	IF	Citations
37	Morphologies and Influential Factors of Forsterite Film in Grain-Oriented Silicon Steel. Journal of Iron and Steel Research International, 2013, 20, 105-110.	2.8	9
38	Low-Cost Grain Oriented Silicon Steels Manufactured by Continuous Annealing. Steel Research International, 2016, 87, 1417-1425.	1.8	9
39	The Influence of Normalization Temperatures on Different Texture Components and Magnetic Properties of Nonoriented Electrical Steels. Steel Research International, 2021, 92, 2000361.	1.8	9
40	Formation of a sharp {100} \$\$ langle 011angle \$\$ âŸ˙ 011 ⟩ texture in Fe–3Â%Si–1.7Â%Mn–0.05Â%C steel sheets. Journal of Materials Science, 2016, 51, 10116-10126.	silicon 3.7	8
41	Secondary Recrystallization Behaviors of Grain-Oriented 6.5Âwt% Silicon Steel Sheets Produced by Rolling and Nitriding Processes. Acta Metallurgica Sinica (English Letters), 2016, 29, 344-352.	2.9	7
42	Retention and evolution of texture in an electrical steel under vacuum annealing. Journal of Materials Science, 2017, 52, 5462-5473.	3.7	7
43	Formation of island grains in high-permeability grain-oriented silicon steel manufactured by the acquired inhibitor method. Journal of Physics and Chemistry of Solids, 2020, 136, 109165.	4.0	7
44	Effect of Fe2O3 and MgO on the crystallization behaviour, sinterability and properties of the CaO-Al2O3-SiO2 glass-ceramics. Journal of the Australian Ceramic Society, 2020, 56, 979-986.	1.9	7
45	Texture Optimization for Intermediate Si-Containing Non-oriented Electrical Steel. Journal of Materials Engineering and Performance, 2014, 23, 3849-3858.	2.5	6
46	Transformation textures in pure titanium: Texture memory vs surface effect. Materials Characterization, 2020, 164, 110359.	4.4	6
47	Transformation Delay and Texture Memory Effect of Columnar Grained Cast Slab in Low Grades Non-oriented Electrical Steels. ISIJ International, 2021, 61, 1669-1678.	1.4	6
48	A Preliminary Electron Backscatter Diffraction Study of Microstructures and Microtextures Evolution during Au Stud and Flip Chip Thermosonic Bonding. Journal of Electronic Materials, 2007, 36, 587-592.	2.2	5
49	The Change of Orientation Relationships Between Austenite and α′-Martensite During Deformation in High Manganese TRIP Steel. Acta Metallurgica Sinica (English Letters), 2015, 28, 289-294.	2.9	5
50	Improvement of Texture and Magnetic Properties by Surface Effect Induced Transformation in Nonâ€Oriented Fe–0.82Si–1.37Mn Steel Sheets. Steel Research International, 2018, 89, 1800045.	1.8	5
51	Texture Control of Pure Titanium Sheet by the Surface Effect during Phase Transformation. Metals, 2018, 8, 358.	2.3	5
52	Asymmetrical Precipitation on the {10-12} Twin Boundary in the Magnesium Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4446-4451.	2.2	5
53	Orientation gradient on surface of non-oriented electrical steel annealed by γ → α transformation. Journal of Iron and Steel Research International, 2020, 27, 88-95.	2.8	5
54	BEHAVIOR OF MARTENSITE REVERSE TRANSFORMATION IN 18Mn TRIP STEEL DURING WARM DEFORMATION. Jinshu Xuebao/Acta Metallurgica Sinica, 2011, 46, 1153-1160.	0.3	5

#	Article	IF	CITATIONS
55	Dependency of deformation twinning on grain orientation in an FCC and a HCP metal. Frontiers of Materials Science in China, 2007, 1, 331-341.	0.5	4
56	Interaction Between Deformationâ€Induced and Thermal Martensite in Highâ€Manganese TRIP Steel. Steel Research International, 2015, 86, 576-580.	1.8	4
57	Punchability and Punching Fracture Behavior of High Silicon Steel Sheets. Journal of Iron and Steel Research International, 2015, 22, 852-857.	2.8	4
58	Analysis of {100} Texture Formation in Vacuum Annealed Electrical Steel Based on Elastic Anisotropy and Surface Energy Anisotropy. Steel Research International, 2019, 90, 1800320.	1.8	4
59	Solute Clusters/Enrichment at the Early Stage of Ageing in Mg–Zn–Gd Alloys Studied by Atom Probe Tomography. Acta Metallurgica Sinica (English Letters), 2019, 32, 187-193.	2.9	4
60	Effect of the Initial Columnarâ€Grained Inhomogeneity of Electrical Steels on the Transformation Temperature. Steel Research International, 2022, 93, 2100388.	1.8	4
61	Inspection of Adiabatic Shear Bands in High Manganese TRIP Steels. Materials Science Forum, 2013, 753, 72-75.	0.3	3
62	Behavior of Transformation-Induced Plasticity during Adiabatic Shear Bands Formation in High Manganese Steels. Steel Research International, 2014, 85, 1465-1468.	1.8	3
63	Prolonged work hardening range in high manganese TRIP steel during adiabatic shear band formation. Materials Letters, 2014, 134, 180-183.	2.6	3
64	Different Mechanisms of Îμ-M and α′-M Variant Selection and the Influencing Factors of Îμ-M Reversion During Dynamic Tension in TRIP Steel. Acta Metallurgica Sinica (English Letters), 2018, 31, 449-455.	2.9	3
65	Analysis of oxide layer structure in nitrided grain-oriented silicon steel. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 1531-1538.	4.9	3
66	Different formation mechanisms of {210}<001> orientation in η fiber texture of ultra-thin grain-oriented silicon steel using quasi-in-situ analysis method. Materials Chemistry and Physics, 2022, 278, 125726.	4.0	3
67	On the transformation textures influenced by deformation in electrical steels, high manganese steels and pure titanium sheets. Frontiers of Materials Science, 2022, 16, 1.	2.2	3
68	Surface effect induced phase transformation by Mn removal during annealing and its textures in cold-rolled high manganese transformation-induced plasticity steel. Journal of Iron and Steel Research International, 2022, 29, 494-502.	2.8	2
69	Dependence of deformation mechanisms on grain orientations and their changes calculated based on Sachs model in magnesium alloy AZ31. Frontiers of Materials Science in China, 2008, 2, 316-321.	0.5	1
70	Splitting of needle-like precipitates in grain-oriented silicon steel manufactured by the acquired inhibitor method. Materials Characterization, 2021, 182, 111550.	4.4	1
71	Formation of $\{100\}$ Subgrain Variants and $\hat{1}$ £3 Variants During Phase Transformation of Columnar Grains in Electrical Steel: Texture Memory and Variant Selection. Steel Research International, 2022, 93, 2100594.	1.8	1
72	Effects of Grain Boundaries in Columnar Grained Electrical Steels during Deformation and Recrystallization. Materials Science Forum, 2013, 753, 173-176.	0.3	0

ARTICLE IF CITATIONS

73 Cube Texture Control by Retaining From Columnar Grains in a Fe-3%Si Alloy. , 0, , 179-184. 0