Juan Paolo S Bermundo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6977168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Density of States in Amorphous In-Ga-Zn-O Thin-Film Transistor under Negative Bias Illumination Stress. ECS Journal of Solid State Science and Technology, 2014, 3, Q3001-Q3004.	1.8	34
2	Highly Reliable Polysilsesquioxane Passivation Layer for <i>a</i> -InGaZnO Thin-Film Transistors. ECS Journal of Solid State Science and Technology, 2014, 3, Q16-Q19.	1.8	32
3	Effect of contact material on amorphous InGaZnO thin-film transistor characteristics. Japanese Journal of Applied Physics, 2014, 53, 03CC04.	1.5	30
4	Impact of Mg level on lattice relaxation in a p-AlGaN hole source layer and attempting excimer laser annealing on p-AlGaN HSL of UVB emitters. Nanotechnology, 2021, 32, 055702.	2.6	23
5	Highly reliable photosensitive organic-inorganic hybrid passivation layers for <i>a</i> -InGaZnO thin-film transistors. Applied Physics Letters, 2015, 107, .	3.3	21
6	Hot carrier effects in InGaZnO thin-film transistor. Applied Physics Express, 2019, 12, 094007.	2.4	21
7	Effect of excimer laser annealing on <i>a</i> -InGaZnO thin-film transistors passivated by solution-processed hybrid passivation layers. Journal Physics D: Applied Physics, 2016, 49, 035102.	2.8	20
8	Significant mobility improvement of amorphous In-Ga-Zn-O thin-film transistors annealed in a low temperature wet ambient environment. Applied Physics Letters, 2018, 112, 193501.	3.3	20
9	Low temperature cured poly-siloxane passivation for highly reliable <i>a</i> -InGaZnO thin-film transistors. Applied Physics Letters, 2018, 112, .	3.3	18
10	Reliability Improvement of Amorphous InGaZnO Thin-Film Transistors by Less Hydroxyl-Groups Siloxane Passivation. Journal of Display Technology, 2016, 12, 263-267.	1.2	17
11	High-Performance Fully Solution-Processed Oxide Thin-Film Transistors via Photo-Assisted Role Tuning of InZnO. ACS Applied Electronic Materials, 2020, 2, 2398-2407.	4.3	17
12	H and Au diffusion in high mobility <i>a</i> -InGaZnO thin-film transistors via low temperature KrF excimer laser annealing. Applied Physics Letters, 2017, 110, .	3.3	14
13	High performance top gate a-IGZO TFT utilizing siloxane hybrid material as a gate insulator. AIP Advances, 2018, 8, .	1.3	13
14	Instantaneous Semiconductor-to-Conductor Transformation of a Transparent Oxide Semiconductor a-InGaZnO at 45 °C. ACS Applied Materials & Interfaces, 2018, 10, 24590-24597.	8.0	12
15	Improvement in Bias Stress Stability of Solution-Processed Amorphous InZnO Thin-Film Transistors via Low-Temperature Photosensitive Passivation. IEEE Electron Device Letters, 2020, 41, 1372-1375.	3.9	12
16	Fluorine incorporation in solution-processed poly-siloxane passivation for highly reliable <i>a</i> -InGaZnO thin-film transistors. Journal Physics D: Applied Physics, 2018, 51, 125105.	2.8	11
17	Dimethylaluminum hydride for atomic layer deposition of Al ₂ O ₃ passivation for amorphous InGaZnO thin-film transistors. Applied Physics Express, 2018, 11, 061103.	2.4	11
18	Nano-crystallization in ZnO-doped In2O3 thin films via excimer laser annealing for thin-film transistors. AIP Advances, 2016, 6, 065216.	1.3	10

#	Article	IF	CITATIONS
19	Self-Heating Suppressed Structure of a-IGZO Thin-Film Transistor. IEEE Electron Device Letters, 2018, 39, 1322-1325.	3.9	9
20	Degradation phenomenon in metal-oxide-semiconductor thin-film transistors and techniques for its reliability evaluation and suppression. Japanese Journal of Applied Physics, 2019, 58, 090502.	1.5	9
21	Highly reliable low-temperature (180 °C) solution-processed passivation for amorphous In–Zn–O thin-film transistors. Applied Physics Express, 2019, 12, 064002.	2.4	8
22	High mobility silicon indium oxide thin-film transistor fabrication by sputtering process. Vacuum, 2022, 199, 110963.	3.5	8
23	30â€3: High Performance All Solution Processed Oxide Thinâ€Film Transistor via Photoâ€induced Semiconductorâ€toâ€Conductor Transformation of aâ€InZnO. Digest of Technical Papers SID International Symposium, 2019, 50, 422-425.	0.3	7
24	Insulator-to-semiconductor conversion of solution-processed ultra-wide bandgap amorphous gallium oxide via hydrogen annealing. Applied Physics Express, 2022, 15, 024003.	2.4	7
25	Highly reliable passivation layer for a-InGaZnO thin-film transistors fabricated using polysilsesquioxane. Materials Research Society Symposia Proceedings, 2014, 1633, 139-144.	0.1	6
26	Effect of Fluorine in a Gate Insulator on the Reliability of Indium-Gallium-Zinc Oxide Thin-Film Transistors. ECS Journal of Solid State Science and Technology, 2016, 5, N17-N21.	1.8	6
27	Bias stress and humidity exposure of amorphous InGaZnO thin-film transistors with atomic layer deposited Al2O3 passivation using dimethylaluminum hydride at 200 °C. Journal Physics D: Applied Physics, 2020, 53, 165103.	2.8	6
28	Rapid photo-assisted activation and enhancement of solution-processed InZnO thin-film transistors. Journal Physics D: Applied Physics, 2020, 53, 045102.	2.8	5
29	High Performance Amorphous In–Ga–Zn–O Thin-Film Transistors with Low Temperature High-k Solution Processed Hybrid Gate Insulator. ECS Journal of Solid State Science and Technology, 2020, 9, 025002.	1.8	5
30	Temperature dependence and functionalization of solution processed high-k hybrid gate insulators for high performance oxide thin-film transistors. Journal Physics D: Applied Physics, 2022, 55, 075102.	2.8	5
31	Photosensitive polysiloxane passivation fabricated at low temperature for highly reliable amorphous InGaZnO thin-film transistors. Japanese Journal of Applied Physics, 2018, 57, 090306.	1.5	2
32	Spray pyrolyzed fluorinated inorganic-organic passivation for solution-processed a-InZnO thin-film transistors. Materials Science in Semiconductor Processing, 2022, 146, 106669.	4.0	2
33	Reliability of bottom gate amorphous InGaZnO thin-film transistors with siloxane passivation layer. , 2014, , .		1
34	Low Temperature High-k Solution Processed Hybrid Gate Insulator for High Performance Amorphous In-Ga-Zn-O Thin-Film Transistors. , 2019, , .		1
35	Improvement of the stability of an electric double-layer transistor using a 1H,1H,2H,2H-perfluorodecyltriethoxysilane barrier layer. Japanese Journal of Applied Physics, 2019, 58, 040907.	1.5	1
36	Pâ€11: High Performance Allâ€Solution Processed InZnO Thinâ€Film Transistors via Photoâ€Functionalization at Varying Fluence and Annealing Environment. Digest of Technical Papers SID International Symposium, 2020, 51, 1350-1353.	0.3	1

#	Article	IF	CITATIONS
37	Photo-assisted Processing of Amorphous Gallium Oxide (a-GaOx) Thin Film for Flexible and Transparent Device Application. , 2020, , .		1
38	Reliability improvement in amorphous InGaZnO thin film transistors passivated by photosensitive polysilsesquioxane passivation layer. , 2014, , .		0
39	Reliability Enhancement of Solution Processed Amorphous In-Zn-O Thin-Film Transistors via a Low Temperature (180 °C) Solution Processed Passivation. , 2018, , .		0
40	Effective Trapping Reduction in SiO2/GaN MOS Structure by High Pressure Water Vapor Annealing. ECS Journal of Solid State Science and Technology, 2019, 8, P388-P391.	1.8	0
41	Pâ€193: Lateâ€News Poster: Low Temperature Solution Processed InZnO TFT Annealed in Wet Ambient. Digest of Technical Papers SID International Symposium, 2019, 50, 1333-1336.	0.3	0
42	High-k Solution Processed Hybrid Gate Insulators for Amorphous Oxide Thin-Film Transistors and its Temperature and Thickness Dependence. , 2021, , .		0
43	Performance Enhancement of Solution-Processed In-Zn-O Thin-film Transistors via Low-Temperature Wet Annealing Ambients. , 2021, , .		0
44	31â€2: <i>Student Paper:</i> Fermi Level Prediction of Solutionâ€processed Ultraâ€wide Band gap aâ€Ga ₂ O _x via Supervised Machine Learning Models. Digest of Technical Papers SID International Symposium, 2022, 53, 369-372.	0.3	0