Gang-Lin Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6977104/publications.pdf

Version: 2024-02-01

157 papers 3,368 citations

218677 26 h-index 206112 48 g-index

168 all docs

 $\frac{168}{\text{docs citations}}$

168 times ranked 3020 citing authors

#	Article	lF	CITATIONS
1	Fabricating Ag/PW ₁₂ /Zrâ€ <i>m</i> TiO ₂ Composite via Doping and Interface Engineering: An Efficient Catalyst with Bifunctionality in Photo―and Electroâ€Driven Nitrogen Reduction Reactions. Advanced Sustainable Systems, 2022, 6, 2100307.	5.3	9
2	Amorphization and defect engineering in constructing ternary composite Ag/PW ₁₀ V ₂ /am-TiO _{2â^²<i>x</i>} for enhanced photocatalytic nitrogen fixation. New Journal of Chemistry, 2022, 46, 1731-1740.	2.8	9
3	Methyl nitrate energetic compounds based on bicyclic scaffolds of furazan–isofurazan (isoxazole): syntheses, crystal structures and detonation performances. RSC Advances, 2022, 12, 7712-7719.	3.6	3
4	Designing "Core–Shell―Insolubleâ€SiW ₁₁ Fe@δâ€Bi ₂ O ₃ Zâ€Schementerojunction for Photoâ€Driven Nitrogen Reduction Reaction and Evaluating the Impact of Oxygen toward Nitrogen Reduction. Advanced Materials Interfaces, 2022, 9, .		6
5	Regulating Electronic Structure in Bi ₂ O ₃ Architectures by Ti Mediation: A Strategy for Dual Active Sites Synergistically Promoting Photocatalytic Nitrogen Hydrogenation. ChemSusChem, 2022, 15, .	6.8	6
6	In Situ Depositing Ag NPs on PDA/SiW ₁₁ V Coâ€encapsulated Fe ₃ O ₄ @TiO ₂ Magnetic Microspheres as Highly Efficient and Durable Visibleâ€lightâ€driven Photocatalysts. ChemCatChem, 2021, 13, 388-396.	3.7	10
7	A PW ₁₂ /Ag functionalized mesoporous silica-coated magnetic Fe ₃ O ₄ core–shell composite as an efficient and recyclable photocatalyst. Dalton Transactions, 2021, 50, 578-586.	3.3	9
8	Bi2WO6 hollow microspheres with high specific surface area and oxygen vacancies for efficient photocatalysis N2 fixation. Chemical Engineering Journal, 2021, 414, 128827.	12.7	97
9	Phosphotungstic Acid Supported on Magnetic Mesoporous Tantalum Pentoxide Microspheres: Efficient Heterogeneous Catalysts for Acetalization of Benzaldehyde with Ethylene Glycol. Catalysis Letters, 2020, 150, 1204-1217.	2.6	3
10	Photocatalytic performance of mesoporous composites of TiO2–ZrO2 and phosphotungstic acid. Journal of Materials Science, 2020, 55, 3195-3211.	3.7	9
11	Direct utilization of air and water as feedstocks in the photo-driven nitrogen reduction reaction over a ternary Z-scheme SiW ₉ Co ₃ /PDA/BWO hetero-junction. Journal of Materials Chemistry A, 2020, 8, 16590-16598.	10.3	38
12	Construction of visible luminescent lanthanide coordination compounds with different stacking modes based on a carboxylate substituted terpyridyl derivative ligand. Inorganica Chimica Acta, 2020, 506, 119550.	2.4	8
13	Lanthanide coordination polymers constructed from the asymmetrical N-heterocyclic rigid carboxylate: Synthesis, crystal structures, luminescence properties and magnetic properties. Polyhedron, 2019, 161, 47-55.	2.2	64
14	Solvothermal syntheses, crystal structures and luminescence properties of Zn(II) coordination compounds based on imidazophenanthroline carboxylate derivative ligand. Journal of Solid State Chemistry, 2019, 277, 1-8.	2.9	5
15	Syntheses, structures, fluorescence sensing properties and white-light emission of lanthanide coordination polymers assembled from imidazophenanthroline derivative and isophthalate ligands. Journal of Solid State Chemistry, 2019, 276, 6-18.	2.9	10
16	Syntheses, structures and magnetic properties for transition metal coordination polymers based on polycarboxylate and isomeric terpyridyl carboxylate ligands. Journal of Solid State Chemistry, 2019, 272, 210-220.	2.9	16
17	Four new Zn/Cd coordination polymers constructed by the asymmetrical N-heterocyclic rigid carboxylate: Synthesis, crystal structure, photoluminescence and sensing properties. Journal of Solid State Chemistry, 2019, 269, 158-166.	2.9	7
18	Dy(<scp>iii</scp>) zig-zag chains assembled in a 3D framework with single-molecule magnet behaviour. Dalton Transactions, 2019, 48, 814-817.	3.3	20

#	Article	IF	CITATIONS
19	Structural investigation of one- and three-dimensional lanthanide(III) coordination polymers based on functionalized terpyridine carboxylate and aromatic dicarboxylate ligands. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 422-432.	0.5	7
20	A large, X-shaped polyoxometalate [As ₆ Fe ₇ Mo ₂₂ O ₉₈] ^{25a^²} assembled from [AsMo ₇ O ₂₇] ^{9a^²} and [FeMo ₄ O ₁₉] ^{11a^²} moieties. Dalton Transactions, 2018, 47, 15661-15665.	3 . 3	4
21	Catalytic Oxidative/Extractive Desulfurization of Model Oil using Transition Metal Substituted Phosphomolybdates-Based Ionic Liquids. Catalysts, 2018, 8, 639.	3.5	22
22	Three interpenetrating coordination polymers with 3D honeycomb networks derived from versatile ligand: 4'-(4-pyridyl)-4,2':6′,4″-terpyridine. Journal of Molecular Structure, 2018, 1171, 38-44.	3.6	3
23	Two 2D frameworks of inorganic-organic hybrids based on Keggin-type tungstogermanates and {Cu I (Cu II)-bimb} n polymer chains. Inorganic Chemistry Communication, 2018, 95, 12-16.	3.9	3
24	Cadmium(II) coordination polymers constructed from a bis-functionalized ligand 4′-(3-carboxyphenyl)-2,2′:6′,2″-terpyridine: Synthesis, structure and luminescence. Polyhedron, 2017, 11-11.	l 24 ;	13
25	A family of entangled coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and auxiliary N-donor ligands: Luminescent sensing. Journal of Solid State Chemistry, 2017, 249, 87-97.	2.9	23
26	Two luminescent d 10 metal coordination polymers assembled from a semirigid terpyridyl carboxylate ligand with high selective detecting of Cu $2+$, Cr 2 O 7 $2-$ and acetone. Journal of Solid State Chemistry, 2017, 251, 79-89.	2.9	34
27	Deep Oxidative Desulfurization of Refractory Sulfur Compounds with Cesium Salts of Mono-Substituted Phosphomolybdate as Efficient Catalyst. Catalysis Letters, 2017, 147, 1811-1819.	2.6	15
28	Selective fluorescence sensors and photocatalysis of four new luminescent coordination complexes. Journal of Molecular Structure, 2017, 1141, 107-114.	3.6	7
29	A series of transition metal coordination polymers with mixed ligands: Specific sensing and removal of metal ions. Inorganica Chimica Acta, 2017, 466, 470-477.	2.4	3
30	Three Organic–Inorganic Hybrids Based on [Mo <i>_xx>/i>O<i>_y</i>) csup><i>n</i>ê " Chains Decorated with Organic Ligands and Transitionâ€Metal Coordination Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 3516-3524.</i>	2.0	9
31	Four new coordination polymers based on carboxyphenyl-substituted dipyrazinylpyridine ligand: Syntheses, structures, magnetic and luminescence properties. Journal of Molecular Structure, 2017, 1128, 385-390.	3.6	13
32	Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands. Journal of Solid State Chemistry, 2017, 245, 67-73.	2.9	5
33	Cu and Fe-doped monolacunary tungstosilicate catalysts with efficient catalytic activity for benzyl alcohol oxidation and simulation gasoline desulfurization. Materials Research Bulletin, 2017, 85, 152-160.	5.2	27
34	A luminescent coordination polymer with potential active site for the sensing of metal cation, anion and nitrobenzene explosive. Inorganic Chemistry Communication, 2016, 71, 19-22.	3.9	12
35	Syntheses, structures and luminescence for zinc coordination polymers based on a multifunctional 4′-(3-carboxyphenyl)- 3,2′:6′,3″-terpyridine ligand. Journal of Solid State Chemistry, 2016, 239, 121-13	0 ^{2.9}	18
36	Syntheses, crystal structures and luminescence properties of lanthanide-based coordination polymers constructed from a functionalized terpyridyl carboxylate ligand. CrystEngComm, 2016, 18, 4613-4626.	2.6	28

#	Article	IF	Citations
37	pH-Dependent assembly of three novel inorganic–organic hybrids based on different isopolymolybdates and Cu ^{I/II} (bbx) _n units. CrystEngComm, 2016, 18, 5320-5326.	2.6	7
38	A novel dimeric polyanion based on mono-manganese substituted Keggin-type phosphotungstate: (MnPW11O39)210a^'. Inorganic Chemistry Communication, 2016, 68, 76-79.	3.9	3
39	Lanthanide coordination frameworks constructed from 3,3′,4,4′-diphenylsulfonetetracarboxylic and 1,10-phenanthroline: synthesis, crystal structures and luminescence properties. Dalton Transactions, 2016, 45, 15436-15444.	3.3	19
40	Synthesis, structure and luminescent sensor of zinc coordination polymers based on a new functionalized bipyridyl carboxylate ligand. Inorganica Chimica Acta, 2016, 453, 771-778.	2.4	9
41	Nitro explosive and cation sensing by a luminescent 2D Cu(I) coordination polymer with multiple Lewis basic sites. Inorganic Chemistry Communication, 2016, 73, 37-40.	3.9	7
42	Divanadiumâ€Substituted Phosphotungstate Supported on Magnetic Mesoporous Silica Nanoparticles as Effective and Recyclable Catalysts for the Selective Oxidation of Alcohols. ChemCatChem, 2016, 8, 3680-3687.	3.7	21
43	Copper(II)-Substituted Polyoxotungstates Immobilized on Amine-Functionalized SBA-15: Efficient Heterogeneous Catalysts for Liquid Phase Oxidative Reaction. Catalysis Letters, 2016, 146, 2468-2477.	2.6	8
44	Synthesis, Structure, White-Light Emission, and Temperature Recognition Properties of Eu/Tb Mixed Coordination Polymers. Inorganic Chemistry, 2016, 55, 871-876.	4.0	75
45	A pure inorganic 1D chain based on {Mo 8 O 28 } clusters and Mn(II) ions:[Mn(H2O)2Mo8O28]n6nâ^. Solid State Sciences, 2016, 51, 18-23.	3.2	12
46	Syntheses, Structures, and Luminescent Properties of Two Cadmium(II) Coordination Compounds based on a Sulfonate Functionalized Terpyridine Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1772-1776.	1.2	4
47	Lanthanide coordination compounds with 2,2 $\hat{a}\in^2$ -bipyridine-6,6 $\hat{a}\in^2$ -dicarboxylate: Synthesis, crystal structure, luminescence and magnetic property. Inorganica Chimica Acta, 2015, 434, 104-112.	2.4	20
48	Two new cobalt(II) coordination polymers based on $4\hat{a}\in^2$ -(2-carboxyphenyl)-4, $2\hat{a}\in^2$: $6\hat{a}\in^2$, $4\hat{a}\in^3$ -terpyridine: Synthestructures and magnetic properties. Polyhedron, 2015, 96, 88-94.	eses 2.2	19
49	Synthesis, crystal structure and luminescence of Ag(I) coordination polymers based on a new sulfonate functionalized terpyridine derivative ligand. Polyhedron, 2015, 91, 52-58.	2.2	12
50	Syntheses, structures and luminescent properties of two new two-fold interpenetrating 2D coordination polymers based on $4\hat{a}\in^2$ -(4-carboxyphenyl)-4, $2\hat{a}\in^2$: $6\hat{a}\in^2$, $4\hat{a}\in^3$ -terpyridine. Inorganic Chemistry Communication, 2015, 56, 1-4.	3.9	12
51	A sandwich-type tungstoantimonate containing trinuclear nickel ions modified with aminopyrazine ligand. Inorganic Chemistry Communication, 2015, 56, 13-16.	3.9	4
52	Syntheses, structures and magnetic properties of four new coordination polymers based on $4\hat{a}\in^2$ -carboxy-4, $2\hat{a}\in^2$: $6\hat{a}\in^2$, $4\hat{a}\in^3$ -terpyridine. Inorganica Chimica Acta, 2015, 430, 17-23.	2.4	13
53	Hydrothermal Syntheses, Crystal Structures, and Luminescence Properties of Lanthanide-Based Coordination Polymers Constructed by Sulfonate Functionalized Imidazophenanthroline Derivative Ligand. Crystal Growth and Design, 2015, 15, 2318-2329.	3.0	35
54	Synthesis and characterization of an unprecedented 3D lanthanide coordination polymer assembled by cubane-like clusters and a flexible V-shaped dicarboxylate ligand. Inorganic Chemistry Communication, 2015, 61, 177-180.	3.9	7

#	Article	IF	CITATIONS
55	Controllable synthesis of four series of lanthanide coordination polymers: synthesis, structures, luminescent and magnetic properties. CrystEngComm, 2015, 17, 8289-8299.	2.6	9
56	A pure inorganic 2-D framework based on paradodecatungstate and Mn ²⁺ ions: syntheses, structure, and properties. Journal of Coordination Chemistry, 2015, 68, 2324-2333.	2.2	5
57	A new 1-D chain based on the trivacant monocapped Keggin arsenomolybdate and the copper complex linker: synthesis, crystal structure, and ESI-MS analyses. Journal of Coordination Chemistry, 2014, 67, 2595-2605.	2.2	0
58	Syntheses, Structures, and Luminescence Properties of Lanthanide Coordination Polymers with a Polycarboxylic Terpyridyl Derivative Ligand. ChemPlusChem, 2014, 79, 985-994.	2.8	11
59	Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands. Journal of Solid State Chemistry, 2014, 212, 185-190.	2.9	8
60	A 3D cadmium(II) coordination polymer constructed from new β-diketone-functionalized pyridinecarboxylate and 4,4′-bipyridine ligands. Inorganic Chemistry Communication, 2014, 44, 143-147.	3.9	4
61	AgBr quantum dots decorated mesoporous Bi ₂ WO ₆ architectures with enhanced photocatalytic activities for methylene blue. Journal of Materials Chemistry A, 2014, 2, 11716-11727.	10.3	211
62	Extended architecture formed by linkage of a new type of decamolybdate {Mo10O34} unit and Cu3 cluster. Inorganic Chemistry Communication, 2014, 49, 12-15.	3.9	6
63	Syntheses, structures and luminescent properties of two new zinc coordination polymers based on 4′-(4-aminephenyl)-4,2′:6′,4″-terpyridine. Inorganic Chemistry Communication, 2014, 48, 26-29.	3.9	18
64	Effect of pH on the construction of lead coordination polymers by the diverse coordination modes of sulfonate functionalized imidazophenanthroline derivative ligand. Polyhedron, 2014, 81, 517-524.	2.2	26
65	Theoretical study of the structure, bonding and electronic behaviour of sandwich complexes [M 3 (C) Tj ETQq1	l 0 <u>.7</u> 8431	4 rgBT /Overl
66	Synthesis, Crystal Structure, and Luminescence of Zn/Cd Coordination Polymers with a New Fuctionalized Terpyridyl Carboxylate Ligand. Crystal Growth and Design, 2014, 14, 1629-1641.	3.0	81
67	Synthesis, crystal structure and luminescence of zinc(II) coordination polymers based on a flexible bifunctional terpyridyl carboxylic ligand. Polyhedron, 2014, 83, 92-101.	2.2	5
68	Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand. Journal of Solid State Chemistry, 2014, 216, 13-22.	2.9	10
69	Vanadium-substituted heteropolyacids immobilized on amine-functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H2O2. Materials Research Bulletin, 2014, 57, 210-220.	5.2	44
70	Two Coordination Polymers based on a Carboxylateâ€Âfunctionalized Imidazophenanthroline Derivative Ligand and Phthalic Acid: Syntheses, Structures and Magnetic Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 184-188.	1.2	4
71	A new polyanion with Dawson-like constitution: [H2SeW18O60]6â^'. Inorganic Chemistry Communication, 2013, 35, 122-125.	3.9	9
72	Organic–inorganic heteropoly blue based on Dawson-type molybdosulfate and organic dye and its characterization and application in electrocatalysis. Electrochimica Acta, 2013, 106, 465-471.	5.2	17

#	Article	IF	CITATIONS
73	A new phase in the Mnll–SelV–MoVl–O system, Mn(MoO3)(SeO3)(H2O): Hydrothermal synthesis, crystal structure and properties. Solid State Sciences, 2013, 25, 6-10.	3.2	2
74	Effect of pH/metal ion on the structure of metal–organic frameworks based on novel bifunctionalized ligand 4′-carboxy-4,2′:6′,4′′-terpyridine. CrystEngComm, 2013, 15, 1460.	2.6	67
75	Single-molecule magnet based on a C-type polyoxomolybdate with an S = 11 ground state: [Fe ₅ CoMo ₂₂ As ₂ O ₈₅ (H ₂ O)] ^{15a^'} . Dalton Transactions, 2013, 42, 58-62.	3.3	20
76	Incorporation of M(H2O)62+ between layers $\{M(H2O)2Ru2(CO3)4Cl2\}n2n\hat{a}^{\circ}$ (M = Zn, Mn): syntheses, structures and magnetic properties. Dalton Transactions, 2013, 42, 16742.	3.3	18
77	Synthesis of mesoporous Bi2WO6 architectures and their gas sensitivity to ethanol. Journal of Materials Chemistry C, 2013, 1, 4153.	5.5	86
78	Cadmium diruthenium(ii,iii) carbonates showing diverse magnetism behavior arising from variety configuration of [Ru2(CO3)4]n3nâ" layer. Dalton Transactions, 2013, 42, 10208.	3.3	20
79	An unusual fan-type polyanion with a silver cation located at the axial center, [AgAs ^{III} ₂ (As ^{III} As ^V Mo ₄ O ₁₈ (OH) _{Dalton Transactions, 2013, 42, 3410-3416.}	ມ ສ ະຂ <td>)>])& sub>3<</td>)>])& sub>3<
80	X-ray single-crystal structure and magnetic properties of KMn(H2O)5Ru2(CO3)4·5H2O: A layered soft magnet. Inorganic Chemistry Communication, 2013, 33, 138-141.	3.9	13
81	Three novel coordination polymers based on bifunctionalized ligand 4′-carboxy-4,2′:6′,4″-terpyridine. Inorganica Chimica Acta, 2013, 397, 117-123.	2.4	19
82	A 3D Zn(II) coordination polymer with a new semi-rigid tripodal ligand tecton showing 4-connected three-fold interpenetrating diamond network and helical character. Inorganic Chemistry Communication, 2013, 34, 51-54.	3.9	16
83	Hydrothermal synthesis and crystal structure of four lead(II) coordination polymers with a carboxylate functionalized imidazophenanthroline derivative ligand. Inorganica Chimica Acta, 2013, 405, 51-57.	2.4	11
84	Heterometallic Co(ii)–Ru2(ii,iii) carbonates: from discrete ionic crystals to three-dimensional network. CrystEngComm, 2013, 15, 5726.	2.6	14
85	Layer structural bimetallic metamagnets obtained from the aggregation of Ru2(CO3)43â ^{-,} and Co2+ in existence of halogen. CrystEngComm, 2013, 15, 4280.	2.6	19
86	Crystal Structures and Luminescent Properties of Two Zinc(II) Coordination Compounds with a βâ€Diketonate Derivative Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1850-1854.	1.2	1
87	Hydrothermal syntheses, crystal structures and luminescence properties of zinc(II) coordination polymers constructed by bifunctional $4\hat{a} \in (4\text{-carboxyphenyl})-3,2\hat{a} \in (2,3\hat{a} \in (3,3\hat{a} \in (3$,2.2	30
88	Triangular {Mn(OH)}36+ fragment encapsulated in trivacant [A-R-SiW9O34]10â^ ligand. Inorganic Chemistry Communication, 2013, 29, 30-32.	3.9	2
89	Hydrothermal syntheses, crystal structures and luminescence properties of zinc(II) and cadmium(II) coordination polymers based on bifunctional $3,2\hat{a}\in^2$: $6\hat{a}\in^2,3\hat{a}\in^2$ -terpyridine- $4\hat{a}\in^2$ -carboxylic acid. Journal of Soli State Chemistry, 2013, 198, 416-423.	d.9	17
90	Synthesis and structure of a new polyoxometalate-based inorganic–organic hybrid and application as a chemically bulk-modified electrode. Journal of Coordination Chemistry, 2013, 66, 1529-1537.	2.2	7

#	Article	lF	CITATIONS
91	Synthesis of Porous-Bi2WO6 and Its Photocatalytic Oxidative Desulfurization (Photo-ODS) Activity of Simulation Fuel. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 1079-1086.	1.3	2
92	A diruthenium soft ferromagnet showing Tc = 3.0 K: $ Mn4(H2O)16H[Ru2(CO3)4]2[Ru2(CO3)4(H2O)2] \hat{A} \cdot 11H2O. \ Dalton \ Transactions, 2012, 41, 4748. $	3.3	21
93	Charge-transfer salts based on Lindqvist and Keggin polyoxoanion acceptors and ferrocenyl cationic donors. New Journal of Chemistry, 2012, 36, 1224.	2.8	5
94	Double Sandwich Polyoxometalate and Its Fe(III) Substituted Derivative, [As ₂ Fe ₅ Mo ₂₁ O ₈₂] ^{17–} and [As ₂ Fe ₆ Mo ₂₀ O ₈₀ (H ₂ O) ₂ O) _{1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2}	6a€" <td>)>¹⁷.</td>)> ¹⁷ .
95	Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities. Journal of Materials Chemistry, 2012, 22, 4751.	6.7	194
96	Combined DFT and BS study on the exchange coupling of dinuclear sandwich-type POM: comparison of different functionals and reliability of structure modeling. Journal of Molecular Modeling, 2012, 18, 2271-2278.	1.8	5
97	Two new inorganic–organic hybrids based on Keggin polyoxometalate and methylene blue and application in chemically bulk-modified electrode. Electrochimica Acta, 2012, 69, 315-319.	5.2	22
98	lonic crystals based on Keggin anion and mixed-valent diruthenium tetracetate: [Ru2(CH3COO)4(H2O)2]2[HnXW12O40]·[Ru2(CH3COO)4(H2O)Cl]·12H2O (XÂ=ÂB, Si, Ge). Solid State Sciences, 2012, 14, 611-615.	3.2	5
99	A Cagelike Polyanion with a Ag ⁺ Enwrapped, [AgAs ₂ Mo ₁₅ O ₅₄] ^{11â°} . Inorganic Chemistry, 2011, 50, 2613-2618.	4.0	25
100	Benzoate acid-dependent formation of a series of interpenetrating metal–organic frameworks based on the cobaltâ^©1,4-bis(imidazolyl)benzene coordination substrate. CrystEngComm, 2011, 13, 1984-1989.	2.6	70
101	Three Banana-Snaped Arsenomolybdates Encapsulating a Hexanuclear Transition-Wetai Central Magnetic Cluster: [As ^{III} ₂ Fe ^{III} ₅ MMo ₂₂ O ₈₅ (H _{2< (M = Fe³⁺, <i>n</i> = 14; M = Ni²⁺ and Mn²⁺, <i>n</i> = 15).}	/ sub >0)]	< 218 p> <i>n⊲</i>
102	In situ hydrothermal syntheses, crystal structures and luminescent properties of two novel zinc(II) coordination polymers based on tetrapyridyl ligand. Inorganica Chimica Acta, 2011, 366, 134-140.	2.4	37
103	A series of lanthanide coordination polymers with 4′-(4-carboxyphenyl)-2,2′:6′,2″-terpyridine: Synthese crystal structures and luminescence properties. Inorganic Chemistry Communication, 2011, 14, 484-488.	⁶ 3.9	50
104	Two novel Zn(II) coordination polymers based on a carboxylate functionalized imidazophenanthroline derivative ligand. Inorganic Chemistry Communication, 2011, 14, 1406-1409.	3.9	16
105	Syntheses, structures and magnetic properties of tetranuclear and trinuclear nickel(II) complexes with Î ² -diketone-functionalized pyridinecarboxylate ligand. Inorganica Chimica Acta, 2010, 363, 3238-3243.	2.4	25
106	Two inorganic–organic hybrid materials based on polyoxometalate anions and methylene blue: Preparations, crystal structures and properties. Journal of Solid State Chemistry, 2010, 183, 2957-2962.	2.9	14
107	Synthesis and Crystal Structure of \hat{l}^3 -Type Octamolybdates Coordinated by Alanines. Journal of Chemical Crystallography, 2010, 40, 985-988.	1.1	7
108	Structural and Spectral Characterization of Two Charge-Transfer Salts Formed by Ferrocenyl and Polyoxometalate Units. Journal of Cluster Science, 2010, 21, 211-221.	3.3	4

#	Article	IF	CITATIONS
109	Synthesis, structures and properties of two novel charge-transfer complexes with the ratio of ferrocenyl:POM of 1:1, (Bu4N)[CpFeCpCH2N(C2H5)3][M6O19] (M=Mo, W). Solid State Sciences, 2010, 12, 1332-1336.	3.2	3
110	Synthesis, Crystal Structure and Magnetic Property of Sanwich-Type Heteropolyoxometalate		

#	Article	IF	CITATIONS
127	Two novel Zn(II) coordination polymers based on trigonal ligand: 4′-(4-pyridyl)-3,2′:6′,3″-terpyridine. Inorganic Chemistry Communication, 2009, 12, 856-859.	3.9	22
128	A zirconium-containing sandwich-type dimer based on trivacant α- and β-[GeW9O34]10â^' units, [Zr3O(OH)2(α-GeW9O34)(β-GeW9O34)]12â^'. Inorganic Chemistry Communication, 2009, 12, 1035-1037.	3.9	13
129	AsMo ₇ O ₂₇ -Bridged Dinuclear Sandwich-Type Heteropolymolybdates of Cr(III) and Fe(III): Magnetism of [MM′(AsMo ₇ O ₂₇) ₂] ^{12â^²} with MM′ = FeFe, CrFe, and CrCr. Inorganic Chemistry, 2009, 48, 10275-10280.	4.0	32
130	Synthesis, structure and absorption spectrum of a new charge transfer salt [Fe(C ₅ H ₅) ₂] ₄ H[GeMo ₁₂ O ₄₀] Â-CH ₃ CN Â-H ₂ O. Journal of Coordination Chemistry, 2009, 62, 1951-1958.	2.2	6
131	Three Hybrid Organicâ^'Inorganic Assemblies Based on Different Arsenatomolybdates and Cu ^{II} â^'Organic Units. Crystal Growth and Design, 2009, 9, 5206-5212.	3.0	24
132	Two extended organic–inorganic hybrids based on sandwich tungstogermanates. Journal of Coordination Chemistry, 2009, 62, 2832-2841.	2.2	12
133	New Examples of Metal Coordination Architectures of 4,4′-Sulfonyldibenzoic Acid: Syntheses, Crystal Structure and Luminescence. European Journal of Inorganic Chemistry, 2008, 2008, 239-250.	2.0	62
134	An investigation of the positional isomeric effect of terpyridine derivatives: Self-assembly of novel cadmium coordination architectures driven by N-donor covalence and Ï€âċÏ€ non-covalent interactions. Polyhedron, 2008, 27, 1517-1526.	2.2	46
135	Assembly of a novel Ag(I) supramolecular architecture constructed from flexible ligand containing asymmetrical tricarboxylate. Inorganic Chemistry Communication, 2008, 11, 28-32.	3.9	22
136	A polyoxoanion with an unusual [Sb6O16(OH)12] cluster skeleton and S4 molecular symmetry [Mo4Sb6(OH)12O24]6a^. Inorganic Chemistry Communication, 2008, 11, 886-888.	3.9	6
137	A new family of lanthanide terpyridine nitrate complexes: Solvothermal syntheses, crystal structures and luminescent properties of [Ln(pytpy)(NO3)2(Î-/4-OCH3)]2. Inorganica Chimica Acta, 2008, 361, 1922-1928.	2.4	20
138	Two sandwich arsenomolybdates based on the new building block As(iii)Mo7O279â^': [Cr2(AsMo7O27)2]12â^' and [Cu2(AsMo7O27)2]14â^'. Dalton Transactions, 2008, , 5698.	3.3	31
139	A one-dimensional assembly of a Keggin tungstogermanate and sodium-pyridine-2-carboxylic acid: NaH ₃ (C ₆ H ₅ N ₂) ₄ [GeW ₁₂ O ₄ 20. Journal of Coordination Chemistry, 2008, 61, 2499-2505.	1 0 ×2sub>]	4
140	Three Novel Heterobimetallic Cd/Znâ^'Na Coordination Polymers: Syntheses, Crystal Structure, and Luminescence. Crystal Growth and Design, 2008, 8, 3706-3712.	3.0	85
141	An Unusual Asymmetric Polyoxomolybdate Containing Mixed-Valence Antimony and its Derivatives: [Sb ₄ 6sub>736H ₂ 6H [Sb ₄ 8b ₉₈ 736H [Sb ₄ 8b ₉₈ 8b _{98 [Sb₄8b_{98 [Sb_{98 [Sb}}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	sub>O) <s <∉s0b>O<</s 	ub>2
142	2011-2016. Ligand and pH-Controlled ZnllBilayer Coordination Polymers Based on Biphenyl-3,3â€~,4,4â€~-tetracarboxylate. Crystal Growth and Design, 2007, 7, 1514-1521.	3.0	136
143	The novel sandwich-type heteropolyoxotungstates [M2Bi2(\hat{l}^2 -B-MW9O34)2]14â \in " (M = Coll, ZnII): \hat{l}^2 -type dimeric heteropolyanions with a transition metal as the central heteroatom and BillI and M as linking atoms. Dalton Transactions, 2007, , 3634.	3.3	22
144	Imidazole Coordinated Sandwich-type Antimony Poly-oxotungstates Na9[{Na(H2O)2}3{M(C3H4N2)}3(SbW9O33)2]·xH2O (M=Nill, Coll, Znll, Mnll). Chinese Journal of Chemistry, 2007, 25, 176-181.	4.9	23

#	Article	IF	CITATIONS
145	Solvothermal synthesis, crystal structure and photoluminescent property of a novel 3D cadmium(II) coordination polymer containing $[Cd5(\hat{l}/43-OH)2(\hat{l}/43-OAc)2]6+$ cores. Inorganic Chemistry Communication, 2007, 10, 269-272.	3.9	20
146	Influence of the Size of Aromatic Chelate Ligands on the Structures of Cadmium(II) Tetracarboxylates Polymers: From 2D Layered Network to 3D Metal-Organic Framework. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 341-345.	1.2	18
147	Hydrothermal Syntheses, Crystal Structures and Luminescence of Two Novel Metalâ€organic Frameworks. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 2053-2058.	1.2	10
148	A Dimeric Fe(III)-Substituted α-Keggin Tungstogermanate: {[α-GeFe2W10O38(OH)]2}14â^². Journal of Cluster Science, 2007, 18, 205-216.	3.3	13
149	A novel crystal coexisting with two kinds of polyoxomolybdates: [n-Bu4N]8[Mo6O19]2[î±-(Mo8O26)]. Journal of Molecular Structure, 2006, 784, 244-248.	3.6	26
150	Synthesis and crystal structure of a new charge transfer salt [NBu4]6H[Fe(C5H5)2][PMoVMo11O40]2. Journal of Molecular Structure, 2006, 787, 101-105.	3.6	14
151	Synthesis and characterization of the organoimidopolyoxomolybdates [n-Bu4N]2[Mo6O17(â‰;NAr)2] (Ar = 2-ethyl-6-methylphenyl and 2-isopropyl-6-methylphenyl). Journal of Coordination Chemistry, 2006, 59, 1739-1747.	2.2	4
152	Synthesis and crystal structure of a novel charge transfer salt, (TMT-TTF)4[HPMo12O40]. Journal of Molecular Structure, 2005, 751, 17-21.	3.6	5
153	Structure and Magnetic Properties of Pyridine Coordinated Sandwich-type Heteropolyanion {[Na(H2O)2]3[Ni(C5H5N)]3(AsW9O33)2}9â^'. Chinese Journal of Chemistry, 2005, 23, 1412-1416.	4.9	11
154	Synthesis, structure and supramolecular assembly in the crystalline state of a bifunctionalized arylimido derivative of hexamolybdate [n-Bu4N]2[Mo6O17(o,p-(MeO)2C6H3N)2]. Journal of Chemical Crystallography, 2005, 35, 1005-1010.	1.1	7
155	Large heteropolymetalate complexes formed from lanthanide (Y, Ce, Pr, Nd, Sm, Eu, Gd), nickel cations and cryptate [As4W40O140]28â^: synthesis and structure characterization. Journal of Molecular Structure, 2004, 690, 95-103.	3.6	27
156	A new tetramolybdenumcobaltdiphosphonate, Na8[CoMo4O12{MeC(O)(PO3)2}2]·18H2O. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m759-m761.	0.2	2
157	Title is missing!. Journal of Cluster Science, 2002, 13, 409-421.	3.3	67