
Andrew Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6977034/publications.pdf Version: 2024-02-01

ANDDEW CLADK

#	Article	IF	CITATIONS
1	A microstructural investigation of an industrial attractive gel at pressure and temperature. Soft Matter, 2022, , .	2.7	0
2	Gel breakdown in a formulated product <i>via</i> accumulated strain. Soft Matter, 2021, 17, 7893-7902.	2.7	2
3	Linear instability of shear thinning pressure driven channel flow. Journal of Non-Newtonian Fluid Mechanics, 2019, 270, 66-78.	2.4	4
4	Viscoelastic drops moving on hydrophilic and superhydrophobic surfaces. Journal of Colloid and Interface Science, 2018, 513, 53-61.	9.4	26
5	Thickening of viscoelastic flow in a model porous medium. Journal of Non-Newtonian Fluid Mechanics, 2018, 251, 56-68.	2.4	14
6	Sliding viscoelastic drops on slippery surfaces. Applied Physics Letters, 2016, 108, .	3.3	10
7	Model Study of Enhanced Oil Recovery by Flooding with Aqueous Solutions of Different Surfactants: How the Surface Chemical Properties of the Surfactants Relate to the Amount of Oil Recovered. Energy & Fuels, 2016, 30, 4767-4780.	5.1	12
8	How Viscoelastic-Polymer Flooding Enhances Displacement Efficiency. SPE Journal, 2016, 21, 0675-0687.	3.1	119
9	Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures. Soft Matter, 2016, 12, 460-468.	2.7	65
10	Accurate Modeling of Polymer Enhanced Oil Recovery Corefloods by Reservoir Simulation. , 2015, , .		2
11	Visualising Surfactant EOR in Core Plugs and Micromodels. , 2015, , .		11
12	How Viscoelastic Polymer Flooding Enhances Displacement Efficiency. , 2015, , .		29
13	Model Study of Enhanced Oil Recovery by Flooding with Aqueous Surfactant Solution and Comparison with Theory. Langmuir, 2015, 31, 3076-3085.	3.5	53
14	Flow of concentrated viscoelastic polymer solutions in porous media: effect of M _W and concentration on elastic turbulence onset in various geometries. Soft Matter, 2015, 11, 6419-6431.	2.7	115
15	Real-time oil-saturation monitoring in rock cores with low-field NMR. Journal of Magnetic Resonance, 2015, 256, 34-42.	2.1	30
16	Mechanism of anomalously increased oil displacement with aqueous viscoelastic polymer solutions. Soft Matter, 2015, 11, 3536-3541.	2.7	91
17	Visualising surfactant enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 449-461.	4.7	75
18	Monitoring Chemical EOR Processes. , 2014, , .		5

Monitoring Chemical EOR Processes. , 2014, , . 18

ANDREW CLARKE

#	Article	IF	CITATIONS
19	Permittivity measurement of minerals. Journal of Physics: Conference Series, 2013, 472, 012008.	0.4	1
20	Fluctuations in Rayleigh breakup induced by particulates. Advances in Colloid and Interface Science, 2010, 161, 15-21.	14.7	2
21	Effect of encapsulated polymers and nanoparticles on shear deformation of droplets. Soft Matter, 2009, 5, 850.	2.7	2
22	Shear and extensional deformation of droplets containing polymers and nanoparticles. Journal of Chemical Physics, 2009, 130, 234905.	3.0	14
23	Experimental Investigation of the Link between Static and Dynamic Wetting by Forced Wetting of Nylon Filament. Langmuir, 2007, 23, 10628-10634.	3.5	61
24	Direct evidence supporting nonlocal hydrodynamic influence on the dynamic contact angle. Physics of Fluids, 2006, 18, 048106.	4.0	24
25	Nonlocal hydrodynamic influence on the dynamic contact angle: Slip models versus experiment. Physical Review E, 2006, 73, 041606.	2.1	48
26	Spreading and Imbibition of Liquid Droplets on Porous Surfaces. Langmuir, 2002, 18, 2980-2984.	3.5	202
27	Coating on a rough surface. AICHE Journal, 2002, 48, 2149-2156.	3.6	33
28	Numerical Simulations of Curtain Coating with a Moving Contact Line. , 2001, , 299-304.		2
29	An Investigation of Electrostatic Assist in Dynamic Wetting. Langmuir, 2000, 16, 2928-2935.	3.5	131
30	Droplet spreading: a microscopic approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149, 123-130.	4.7	38
31	Droplet spreading: a tool to characterize surfaces at the microscopic scale. Journal of Petroleum Science and Engineering, 1999, 24, 189-198.	4.2	10
32	Time-dependent equations governing the shape of a two-dimensional liquid curtain, Part 1: Theory. Physics of Fluids, 1997, 9, 3625-3636.	4.0	48
33	Time-dependent equations governing the shape of a two-dimensional liquid curtain, Part 2: Experiment. Physics of Fluids, 1997, 9, 3637-3644.	4.0	33
34	Contact Angle Relaxation during the Spreading of Partially Wetting Drops. Langmuir, 1997, 13, 7293-7298.	3.5	121
35	Contact Angle Relaxation during Droplet Spreading:Â Comparison between Molecular Kinetic Theory and Molecular Dynamics. Langmuir, 1997, 13, 2164-2166.	3.5	149
36	The application of particle tracking velocimetry and flow visualisation to curtain coating. Chemical Engineering Science, 1995, 50, 2397-2407.	3.8	26

ANDREW CLARKE

#	Article	IF	CITATIONS
37	Spin-polarized Auger-electron diffraction study of the magnetic poisoning of Fe(001) by sulfur. Physical Review B, 1995, 52, R6955-R6958.	3.2	19
38	Hydrodynamic assist of dynamic wetting. AICHE Journal, 1994, 40, 229-242.	3.6	119
39	Electronic and magnetic structure of bcc nickel. Physical Review B, 1992, 46, 237-241.	3.2	37
40	Spinâ€polarized photoemission spectroscopy of magnetic surfaces using undulator radiation. Review of Scientific Instruments, 1992, 63, 1902-1908.	1.3	61
41	Spinâ€polarized coreâ€level photoemission of oxidized Fe(001)(invited). Journal of Applied Physics, 1991, 70, 5918-5922.	2.5	4
42	Magnetic structure of oxidized Fe(001). Physical Review Letters, 1990, 65, 1647-1650.	7.8	75
43	Spin-polarized photoemission studies of the adsorption of O and S on Fe(001). Physical Review B, 1990, 41, 9659-9667.	3.2	63
44	Magnetic surface states on Fe(001). Physical Review B, 1990, 41, 2643-2645.	3.2	46
45	Interaction of carbon monoxide with Fe(001). Physical Review Letters, 1989, 63, 2764-2767.	7.8	29
46	Study of local magnetic properties of an adsorbate by spin-polarized Auger-electron spectroscopy. Physical Review Letters, 1989, 62, 2740-2743.	7.8	27
47	Structural relaxations in epitaxial films of fcc Fe and fcc Co on Cu (001)—a comparative LEED study. Vacuum, 1988, 38, 237-239.	3.5	5
48	Exchange-Split Adsorbate Bands: The Role of Substrate Hybridization. Physical Review Letters, 1988, 61, 2257-2260.	7.8	69
49	Reciprocal Space Imaging of Photoelectron Distributions. Physica Scripta, 1987, 35, 423-426.	2.5	4
50	Waveâ€vector imaging photoelectron spectrometer. Review of Scientific Instruments, 1987, 58, 1439-1444.	1.3	6
51	A leed determination of the structure of cobalt overlayers grown on a single-crystal Cu(001) substrate. Surface Science, 1987, 187, 327-338.	1.9	126
52	Thickness dependent relaxations in Î ³ fcc Fe films on Cu(001): A LEED structural study. Surface Science, 1987, 192, L843-L848.	1.9	88
53	Thickness dependent relaxations in Î ³ fcc Fe films on Cu(001): A LEED structural study. Surface Science Letters, 1987, 192, L843-L848.	0.1	6
54	Optical and thermal evidence for the metal-insulator transition in 1T-TaS2. Journal of Physics C: Solid State Physics, 1983, 16, L831-L834.	1.5	17