
Yuxi Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6976723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 2007, 168, 176-185.	0.4	973
2	Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. Journal of Analytical Atomic Spectrometry, 2006, 21, 94-96.	1.6	322
3	Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicology Letters, 2008, 183, 72-80.	0.4	310
4	Multihydroxylated [Gd@C82(OH)22]nNanoparticles:Â Antineoplastic Activity of High Efficiency and Low Toxicity. Nano Letters, 2005, 5, 2050-2057.	4.5	281
5	Biogeochemical cycling of selenium in Chinese environments. Applied Geochemistry, 2001, 16, 1345-1351.	1.4	182
6	Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochemical Pharmacology, 2006, 71, 872-881.	2.0	152
7	Increased Oxidative DNA Damage, as Assessed by Urinary 8-Hydroxy-2′-Deoxyguanosine Concentrations, and Serum Redox Status in Persons Exposed to Mercury. Clinical Chemistry, 2005, 51, 759-767.	1.5	113
8	Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite. Chemie Der Erde, 2012, 72, 41-47.	0.8	104
9	The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology, 2008, 19, 145102.	1.3	103
10	Organic Selenium Supplementation Increases Mercury Excretion and Decreases Oxidative Damage in Long-Term Mercury-Exposed Residents from Wanshan, China. Environmental Science & Technology, 2012, 46, 11313-11318.	4.6	76
11	Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. Journal of Analytical Atomic Spectrometry, 2008, 23, 1121.	1.6	75
12	Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environmental Research, 2013, 125, 75-81.	3.7	73
13	The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species. Plant and Soil, 2016, 398, 87-97.	1.8	73
14	Potential Health Impact on Mice after Nasal Instillation of Nano-Sized Copper Particles and Their Translocation in Mice. Journal of Nanoscience and Nanotechnology, 2009, 9, 6335-6343.	0.9	72
15	A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotoxicology and Environmental Safety, 2020, 189, 109955.	2.9	70
16	Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere, 2017, 182, 293-300.	4.2	68
17	Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics, 2014, 6, 1951-1957.	1.0	64
18	The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in qingzhen, Guizhou, China. Plant and Soil, 2015, 391, 195-205.	1.8	61

#	Article	IF	CITATIONS
19	Understanding Enhanced Microbial MeHg Production in Mining-Contaminated Paddy Soils under Sulfate Amendment: Changes in Hg Mobility or Microbial Methylators?. Environmental Science & Technology, 2019, 53, 1844-1852.	4.6	58
20	Advanced nuclear analytical techniques for metalloproteomics. Journal of Analytical Atomic Spectrometry, 2007, 22, 856.	1.6	55
21	Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence after sodium dodecyl sulphate polyacrylamide gel electrophoresis. Analytica Chimica Acta, 2003, 485, 131-137.	2.6	51
22	Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicology and Environmental Safety, 2020, 190, 110130.	2.9	51
23	Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2007, 22, 925.	1.6	50
24	Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival. Environmental Pollution, 2014, 192, 204-211.	3.7	48
25	Silica nanoparticles alleviate mercury toxicity <i>via</i> immobilization and inactivation of Hg(<scp>ii</scp>) in soybean (<i>Glycine max</i>). Environmental Science: Nano, 2020, 7, 1807-1817.	2.2	48
26	Increased Methylmercury Accumulation in Rice after Straw Amendment. Environmental Science & Technology, 2019, 53, 6144-6153.	4.6	45
27	Scalp hair as a biomarker in environmental and occupational mercury exposed populations: Suitable or not?. Environmental Research, 2008, 107, 39-44.	3.7	43
28	Demethylation of methylmercury in growing rice plants: An evidence of self-detoxification. Environmental Pollution, 2016, 210, 113-120.	3.7	43
29	Intestinal Methylation and Demethylation of Mercury. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 597-604.	1.3	42
30	Synthesis and application of magnesium amorphous calcium carbonate for removal of high concentration of phosphate. Chemical Engineering Journal, 2014, 251, 102-110.	6.6	41
31	Absolute intensity calibration and application at BSRF SAXS station. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 900, 64-68.	0.7	40
32	Significance and Systematic Analysis of Metallic Impurities of Carbon Nanotubes Produced by Different Manufacturers. Journal of Nanoscience and Nanotechnology, 2011, 11, 2389-2397.	0.9	39
33	Mobilization of mercury species under dynamic laboratory redox conditions in a contaminated floodplain soil as affected by biochar and sugar beet factory lime. Science of the Total Environment, 2019, 672, 604-617.	3.9	38
34	Distribution of TiO2 particles in the olfactory bulb of mice after nasal inhalation using microbeam SRXRF mapping techniques. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 527-531.	0.7	37
35	Nanometallomics: an emerging field studying the biological effects of metal-related nanomaterials. Metallomics, 2014, 6, 220.	1.0	37
36	Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence combined with gel filtration chromatography and isoelectric focusing separation. Analyst, The, 2002, 127, 1700-1704.	1.7	33

#	Article	IF	Citations
37	Metallomics, elementomics, and analytical techniques. Pure and Applied Chemistry, 2008, 80, 2577-2594.	0.9	33
38	Elemental sulfur amendment enhance methylmercury accumulation in rice (Oryza sativa L.) grown in Hg mining polluted soil. Journal of Hazardous Materials, 2019, 379, 120701.	6.5	32
39	Synchrotron-based techniques for studying the environmental health effects of heavy metals: Current status and future perspectives. TrAC - Trends in Analytical Chemistry, 2020, 122, 115721.	5.8	32
40	Nanomaterial-based approaches for the detection and speciation of mercury. Analyst, The, 2015, 140, 7841-7853.	1.7	31
41	Translocation and transformation of selenium in hyperaccumulator plant Cardamine enshiensis from Enshi, Hubei, China. Plant and Soil, 2018, 425, 577-588.	1.8	31
42	Pollution characteristics and ecological risks associated with heavy metals in the Fuyang river system in North China. Environmental Pollution, 2021, 281, 116994.	3.7	31
43	Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics, 2016, 8, 663-671.	1.0	30
44	Towards screening the neurotoxicity of chemicals through feces after exposure to methylmercury or inorganic mercury in rats: A combined study using gut microbiome, metabolomics and metallomics. Journal of Hazardous Materials, 2021, 409, 124923.	6.5	30
45	Synchrotron radiation techniques for nanotoxicology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1531-1549.	1.7	29
46	Mercury modulates selenium activity via altering its accumulation and speciation in garlic (Allium) Tj ETQq0 0 0 r	gBT /Overl 1.0	ock 10 Tf 50
47	Selenoprotein P as the major transporter for mercury in serum from methylmercury-poisoned rats. Journal of Trace Elements in Medicine and Biology, 2018, 50, 589-595.	1.5	28
48	Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environmental Science: Nano, 2020, 7, 1115-1125.	2.2	28
49	Study of chromium-containing proteins in subcellular fractions of rat liver by enriched stable isotopic tracer technique and gel filtration chromatography. Analytical and Bioanalytical Chemistry, 2003, 375, 363-368.	1.9	27
50	Thiosulfate amendment reduces mercury accumulation in rice (Oryza sativa L.). Plant and Soil, 2018, 430, 413-422.	1.8	27
51	Direct quantitative speciation of selenium in selenium-enriched yeast and yeast-based products by X-ray absorption spectroscopy confirmed by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2010, 25, 426.	1.6	25
52	Multielemental contents of foodstuffs from the Wanshan (China) mercury mining area and the potential health risks. Applied Geochemistry, 2011, 26, 182-187.	1.4	25
53	Oxidative Stress and Acute Changes in Murine Brain Tissues After Nasal Instillation of Copper Particles with Different Sizes. Journal of Nanoscience and Nanotechnology, 2014, 14, 4534-4540.	0.9	25

#	Article	IF	CITATIONS
55	Distribution of Selenium-Containing Proteins in Human Serum. Biological Trace Element Research, 2004, 100, 105-116.	1.9	22
56	Combination of synchrotron radiation X-ray fluorescence with isoelectric focusing for study of metalloprotein distribution in cytosol of hepatocellular carcinoma and surrounding normal tissues. Journal of Analytical Atomic Spectrometry, 2005, 20, 473.	1.6	20
57	Mercury in human hair and blood samples from people living in Wanshan mercury mine area, Guizhou, China: An XAS study. Journal of Inorganic Biochemistry, 2008, 102, 500-506.	1.5	20
58	Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa) Tj ETQqO 0 Elements in Medicine and Biology, 2018, 50, 435-440.	0 rgBT /O 1.5	verlock 10 Tf 20
59	Effects of Farming Activities on the Biogeochemistry of Mercury in Rice–Paddy Soil Systems. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 635-642.	1.3	18
60	Selenium Speciation in Biological Samples Using a Hyphenated Technique of High-performance Liquid Chromatography and Inductively Coupled Plasma Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2006, 34, 749-753.	0.9	17
61	Cellular response of E. coli upon Hg2+ exposure – a case study of advanced nuclear analytical approach to metalloproteomics. Metallomics, 2013, 5, 913.	1.0	17
62	Botanic Metallomics of Mercury and Selenium: Current Understanding of Mercury-Selenium Antagonism in Plant with the Traditional and Advanced Technology. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 628-634.	1.3	17
63	Detection and remediation of mercury contaminated environment by nanotechnology: Progress and challenges. Environmental Pollution, 2022, 293, 118557.	3.7	17
64	Study of Selenium Speciation in Selenized Rice Using High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometer. Chinese Journal of Analytical Chemistry, 2008, 36, 206-210.	0.9	15
65	Full quantification of selenium species by RP and AF-ICP-qMS with on-line isotope dilution in serum samples from mercury-exposed people supplemented with selenium-enriched yeast. Journal of Analytical Atomic Spectrometry, 2011, 26, 224-229.	1.6	15
66	Identification and quantification of seleno-proteins by 2-DE-SR-XRF in selenium-enriched yeasts. Journal of Analytical Atomic Spectrometry, 2015, 30, 1408-1413.	1.6	15
67	Mobilization and methylation of mercury with sulfur addition in paddy soil: Implications for integrated water-sulfur management in controlling Hg accumulation in rice. Journal of Hazardous Materials, 2022, 430, 128447.	6.5	15
68	Modulation of Oxidative Stress by Functionalized Fullerene Materials in the Lung Tissues of Female C57/BL Mice with a Metastatic Lewis Lung Carcinoma. Journal of Nanoscience and Nanotechnology, 2010, 10, 8632-8637.	0.9	13
69	Analysis of Small Molecular Selenium Species in Serum Samples from Mercury-Exposed People Supplemented With Selenium-Enriched Yeast by Anion Exchange-Inductively Coupled Plasma Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2011, 39, 466-470.	0.9	13
70	Elevated mercury bound to serum proteins in methylmercury poisoned rats after selenium treatment. BioMetals, 2016, 29, 893-903.	1.8	13
71	Detection of Mercury-, Arsenic-, and Selenium-Containing Proteins in Fish Liver from A Mercury Polluted Area of Guizhou Province, China. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 1266-1269.	1.1	12
72	Subcellular Distribution of Polyhydroxylated Metallofullerene Gd@C ₈₂ (OH) ₂₂ in Different Tissues of Tumor-Bearing Mice. Journal of Nanoscience and Nanotechnology, 2010, 10, 8597-8602.	0.9	11

#	Article	IF	CITATIONS
73	Human Biological Monitoring of Mercury Through Hair Samples in China. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 701-707.	1.3	11
74	Nanoelemental selenium alleviated the mercury load and promoted the formation of high-molecular-weight mercury- and selenium-containing proteins in serum samples from methylmercury-poisoned rats. Ecotoxicology and Environmental Safety, 2019, 169, 128-133.	2.9	10
75	Bioavailability and methylation of bulk mercury sulfide in paddy soils: New insights into mercury risks in rice paddies. Journal of Hazardous Materials, 2022, 424, 127394.	6.5	9
76	Quantification of Trace Elements in Protein Bands Using Synchrotron Radiation X-ray Fluorescence after Electrophoretic Separation. Chinese Journal of Analytical Chemistry, 2006, 34, 443-446.	0.9	7
77	Phytoavailability and transfer of mercury in soil-pepper system: Influencing factors, fate, and predictive approach for effective management of metal-impacted spiked soils. Environmental Research, 2022, 207, 112190.	3.7	7
78	Non-targeted metallomics through synchrotron radiation X-ray fluorescence with machine learning for cancer screening using blood samples. Talanta, 2022, 245, 123486.	2.9	6
79	Simple, Selective and Sensitive Determination of CH ₃ Hg ⁺ Using Gold Nanocluster. Journal of Nanoscience and Nanotechnology, 2016, 16, 772-776.	0.9	5
80	Comparative study of the effects of different chelating ligands on the absorption and transport of mercury in maize (Zea mays L.). Ecotoxicology and Environmental Safety, 2020, 188, 109897.	2.9	5
81	Accumulation and transformation of nanomaterials in ecological model organisms investigated by using synchrotron radiation techniques. Journal of Analytical Atomic Spectrometry, 2015, 30, 2038-2047.	1.6	4
82	Measurement of protein size in concentrated solutions by small angle Xâ€ray scattering. Protein Science, 2016, 25, 1385-1389.	3.1	4
83	Advanced Nuclear and Related Techniques for Metallomics and Nanometallomics. Advances in Experimental Medicine and Biology, 2018, 1055, 213-243.	0.8	4
84	Chapter 3. X-ray Fluorescence. , 2010, , 62-94.		2
85	Assessment of the Bioavailability of Mercury Sulfides in Paddy Soils Using Sodium Thiosulfate ExtractionÂ-ÂResults from Microcosm Experiments. Bulletin of Environmental Contamination and Toxicology, 2022, , .	1.3	0