Tyson B Littenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6976699/publications.pdf Version: 2024-02-01

TYSON R LITTENBERC

#	Article	IF	CITATIONS
1	Testing general relativity with present and future astrophysical observations. Classical and Quantum Gravity, 2015, 32, 243001.	4.0	943
2	Low-frequency gravitational-wave science with eLISA/NGO. Classical and Quantum Gravity, 2012, 29, 124016.	4.0	391
3	Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches. Classical and Quantum Gravity, 2015, 32, 135012.	4.0	295
4	Bayesian inference for spectral estimation of gravitational wave detector noise. Physical Review D, 2015, 91, .	4.7	172
5	Tests of Bayesian model selection techniques for gravitational wave astronomy. Physical Review D, 2007, 76, .	4.7	107
6	Predicting the LISA white dwarf binary population in the Milky Way with cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5888-5903.	4.4	95
7	Inferring the post-merger gravitational wave emission from binary neutron star coalescences. Physical Review D, 2017, 96, .	4.7	84
8	BASIC PARAMETER ESTIMATION OF BINARY NEUTRON STAR SYSTEMS BY THE ADVANCED LIGO/VIRGO NETWORK. Astrophysical Journal, 2014, 784, 119.	4.5	82
9	On the properties of the massive binary black hole merger GW170729. Physical Review D, 2019, 100, .	4.7	82
10	Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817. Physical Review D, 2018, 98, .	4.7	75
11	Global analysis of the gravitational wave signal from Galactic binaries. Physical Review D, 2020, 101, .	4.7	66
12	BayesWave analysis pipeline in the era of gravitational wave observations. Physical Review D, 2021, 103,	4.7	65
13	Noise spectral estimation methods and their impact on gravitational wave measurement of compact binary mergers. Physical Review D, 2019, 100, .	4.7	54
14	NEUTRON STARS VERSUS BLACK HOLES: PROBING THE MASS GAP WITH LIGO/VIRGO. Astrophysical Journal Letters, 2015, 807, L24.	8.3	51
15	Detection pipeline for Galactic binaries in LISA data. Physical Review D, 2011, 84, .	4.7	45
16	Characterization of the stochastic signal originating from compact binary populations as measured by LISA. Physical Review D, 2021, 104, .	4.7	45
17	Report on the second Mock LISA data challenge. Classical and Quantum Gravity, 2008, 25, 114037.	4.0	44
18	Leveraging waveform complexity for confident detection of gravitational waves. Physical Review D, 2016, 93, .	4.7	42

Tyson B Littenberg

#	Article	IF	CITATIONS
19	Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline. Astrophysical Journal, 2017, 839, 15.	4.5	38
20	Enabling high confidence detections of gravitational-wave bursts. Physical Review D, 2016, 94, .	4.7	36
21	Modeling compact binary signals and instrumental glitches in gravitational wave data. Physical Review D, 2021, 103, .	4.7	36
22	Astrophysical model selection in gravitational wave astronomy. Physical Review D, 2012, 86, .	4.7	34
23	Distinguishing black-hole spin-orbit resonances by their gravitational wave signatures. II. Full parameter estimation. Physical Review D, 2016, 93, .	4.7	27
24	Fortifying the characterization of binary mergers in LIGO data. Physical Review D, 2013, 88, .	4.7	25
25	Prospects for Gravitational Wave Measurement of ZTF J1539+5027. Astrophysical Journal Letters, 2019, 881, L43.	8.3	21
26	Bayesian reconstruction of gravitational wave bursts using chirplets. Physical Review D, 2018, 97, .	4.7	20
27	Reconstructing gravitational wave signals from binary black hole mergers with minimal assumptions. Physical Review D, 2020, 102, .	4.7	19
28	Micrometeoroid Events in LISA Pathfinder. Astrophysical Journal, 2019, 883, 53.	4.5	15
29	Binary white dwarfs as laboratories for extreme gravity with LISA. Classical and Quantum Gravity, 2019, 36, 095017.	4.0	15
30	Morphology-independent test of the mixed polarization content of transient gravitational wave signals. Physical Review D, 2021, 104, .	4.7	12
31	Bayesian time delay interferometry. Physical Review D, 2021, 104, .	4.7	10
32	Gravitational wave sources as timing references for LISA data. Physical Review D, 2018, 98, .	4.7	8
33	Fermi-GBM Follow-up of LIGO-Virgo Binary Black Hole Mergers: Detection Prospects. Astrophysical Journal, 2019, 882, 53.	4.5	7
34	Search for advanced LIGO single interferometer compact binary coalescence signals in coincidence with Gamma-ray events in Fermi-GBM. Classical and Quantum Gravity, 2020, 37, 175001.	4.0	6
35	SYSTEMATIC ERRORS IN LOW-LATENCY GRAVITATIONAL WAVE PARAMETER ESTIMATION IMPACT ELECTROMAGNETIC FOLLOW-UP OBSERVATIONS. Astrophysical Journal, 2016, 820, 7.	4.5	2
36	Interpreting gravitational-wave burst detections: constraining source properties without astrophysical models. Classical and Quantum Gravity, 2020, 37, 105011.	4.0	1