Masashi Maekawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6976516/publications.pdf

Version: 2024-02-01

566801 433756 1,077 34 15 31 citations h-index g-index papers 36 36 36 1752 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. Journal of Cell Science, 2015, 128, 1422-1433.	1.2	209
2	Small GTPases and phosphoinositides in the regulatory mechanisms of macropinosome formation and maturation. Frontiers in Physiology, 2014, 5, 374.	1.3	116
3	Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane. Molecular and Cellular Biology, 2016, 36, 363-374.	1.1	92
4	Sequential breakdown of 3-phosphorylated phosphoinositides is essential for the completion of macropinocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E978-87.	3.3	89
5	Molecular probes to visualize the location, organization and dynamics of lipids. Journal of Cell Science, 2014, 127, 4801-12.	1.2	81
6	Membrane curvature induced by proximity of anionic phospholipids can initiate endocytosis. Nature Communications, 2017, 8, 1393.	5.8	80
7	The Cullin-3–Rbx1–KCTD10 complex controls endothelial barrier function via K63 ubiquitination of RhoB. Journal of Cell Biology, 2018, 217, 1015-1032.	2.3	43
8	Domain 4 (D4) of Perfringolysin O to Visualize Cholesterol in Cellular Membranes—The Update. Sensors, 2017, 17, 504.	2.1	41
9	Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes. Toxins, 2016, 8, 67.	1.5	40
10	Cullinâ€3/KCTD10 E3 complex is essential for Rac1 activation through RhoB degradation in human epidermal growth factor receptor 2â€positive breast cancer cells. Cancer Science, 2019, 110, 650-661.	1.7	37
11	Staurosporines decrease ORMDL proteins and enhance sphingomyelin synthesis resulting in depletion of plasmalemmal phosphatidylserine. Scientific Reports, 2016, 6, 35762.	1.6	26
12	Cullin-3 and its adaptor protein ANKFY1 determine the surface level of integrin \hat{I}^21 in endothelial cells. Biology Open, 2017, 6, 1707-1719.	0.6	23
13	SNX9 determines the surface levels of integrin \hat{l}^21 in vascular endothelial cells: Implication in poor prognosis of human colorectal cancers overexpressing SNX9. Journal of Cellular Physiology, 2019, 234, 17280-17294.	2.0	23
14	The E3 ubiquitin ligase MIB2 enhances inflammation by degrading the deubiquitinating enzyme CYLD. Journal of Biological Chemistry, 2019, 294, 14135-14148.	1.6	21
15	Nematode Homologue of PQBP1, a Mental Retardation Causative Gene, Is Involved in Lipid Metabolism. PLoS ONE, 2009, 4, e4104.	1.1	21
16	Functional analysis of GS28, an intraâ€Colgi SNARE, in <i>Caenorhabditis elegans</i> . Genes To Cells, 2009, 14, 1003-1013.	0.5	15
17	Neddylated Cullin 3 is required for vascular endothelialâ€cadherinâ€mediated endothelial barrier function. Cancer Science, 2017, 108, 208-215.	1.7	15
18	PSMAâ€positive membranes secreted from prostate cancer cells have potency to transform vascular endothelial cells into an angiogenic state. Prostate, 2021, 81, 1390-1401.	1.2	14

#	Article	IF	CITATIONS
19	CNKSR1 serves as a scaffold to activate an EGFR phosphatase via exclusive interaction with RhoB-GTP. Life Science Alliance, 2021, 4, e202101095.	1.3	12
20	The Roles of SPOP in DNA Damage Response and DNA Replication. International Journal of Molecular Sciences, 2020, 21, 7293.	1.8	11
21	SPOP is essential for DNA–protein cross-link repair in prostate cancer cells: SPOP-dependent removal of topoisomerase 2A from the topoisomerase 2A-DNA cleavage complex. Molecular Biology of the Cell, 2020, 31, 478-490.	0.9	11
22	Prospect of divergent roles for the CUL3 system in vascular endothelial cell function and angiogenesis. Journal of Biochemistry, 2017, 162, 237-245.	0.9	8
23	Development of Human CBF1-Targeting Single-Stranded DNA Aptamers with Antiangiogenic Activity <i>In Vitro</i> . Nucleic Acid Therapeutics, 2020, 30, 365-378.	2.0	8
24	Cullin-3/KCTD10 complex is essential for K27-polyubiquitination of EIF3D in human hepatocellular carcinoma HepG2 cells. Biochemical and Biophysical Research Communications, 2019, 516, 1116-1122.	1.0	7
25	ANKFY1 is essential for retinal endothelial cell proliferation and migration via VEGFR2/Akt/eNOS pathway. Biochemical and Biophysical Research Communications, 2020, 533, 1406-1412.	1.0	7
26	KCTD10 Biology: An Adaptor for the Ubiquitin E3 Complex Meets Multiple Substrates. BioEssays, 2020, 42, 1900256.	1.2	6
27	Piezo1 activation using Yoda1 inhibits macropinocytosis in A431 human epidermoid carcinoma cells. Scientific Reports, 2022, 12, 6322.	1.6	6
28	Inner Nuclear Membrane Protein, SUN1, is Required for Cytoskeletal Force Generation and Focal Adhesion Maturation. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	6
29	Enforced expression of phosphatidylinositol 4-phosphate 5-kinase homolog alters PtdIns(4,5)P2 distribution and the localization of small G-proteins. Scientific Reports, 2019, 9, 14789.	1.6	4
30	Cullin 3 regulates ADAMs-mediated ectodomain shedding of amphiregulin. Biochemical and Biophysical Research Communications, 2018, 499, 17-23.	1.0	2
31	Effect of PSMA-positive membranes secreted from prostate cancer cells on vascular endothelial cells Journal of Clinical Oncology, 2022, 40, 141-141.	0.8	1
32	The role of ANKFY1 in endothelial cells for retinal angiogenesis. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 2-Y-E3-4.	0.0	0
33	MP51-09â€∫THE NOVEL ROLE OF SPOP IN REGULATING TOPOISOMERASE 2A IN PROSTATE CANCER CELLS AS A POTENTIAL THERAPEUTIC MARKER FOR DNA REPAIR TARGETED THERAPY. Journal of Urology, 2020, 203, .	0.2	О
34	Abstract P5-10-02: A novel mechanism of phosphatase activation for EGFR by Cullin-3/KCTD10 ubiquitin E3 complex in HER2-positive breast cancer cells. Cancer Research, 2022, 82, P5-10-02-P5-10-02.	0.4	0