
Sandra Loerakker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6976496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechano-regulated cell–cell signaling in the context of cardiovascular tissue engineering. Biomechanics and Modeling in Mechanobiology, 2022, 21, 5-54.	1.4	6
2	Substrate Stiffness Determines the Establishment of Apical-Basal Polarization in Renal Epithelial Cells but Not in Tubuloid-Derived Cells. Frontiers in Bioengineering and Biotechnology, 2022, 10, 820930.	2.0	4
3	Implementing Computational Modeling in Tissue Engineering: Where Disciplines Meet. Tissue Engineering - Part A, 2022, 28, 542-554.	1.6	11
4	Computational analysis of the role of mechanosensitive Notch signaling in arterial adaptation to hypertension. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 133, 105325.	1.5	1
5	Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nature Reviews Cardiology, 2021, 18, 92-116.	6.1	128
6	Computational modelling to reduce outcome variability in tissue-engineered heart valves. European Heart Journal, 2021, 42, 2225-2229.	1.0	5
7	Geometry influences inflammatory host cell response and remodeling in tissue-engineered heart valves in-vivo. Scientific Reports, 2020, 10, 19882.	1.6	22
8	Cellular Contact Guidance Emerges from Gap Avoidance. Cell Reports Physical Science, 2020, 1, 100055.	2.8	36
9	Controlling the adaption behaviour of next-generation tissue-engineered cardiovascular implants via computational modelling. European Heart Journal, 2020, 41, 1069-1073.	1.0	5
10	Lateral induction limits the impact of cell connectivity on Notch signaling in arterial walls. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3323.	1.0	11
11	Pressure-induced collagen degradation in arterial tissue as a potential mechanism for degenerative arterial disease progression. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 109, 103771.	1.5	7
12	Computational modeling for cardiovascular tissue engineering: the importance of including cell behavior in growth and remodeling algorithms. Current Opinion in Biomedical Engineering, 2020, 15, 1-9.	1.8	18
13	Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress. Scientific Reports, 2019, 9, 12415.	1.6	62
14	Increased Cell Traction-Induced Prestress in Dynamically Cultured Microtissues. Frontiers in Bioengineering and Biotechnology, 2019, 7, 41.	2.0	8
15	Mechanosensitivity of Jagged–Notch signaling can induce a switch-type behavior in vascular homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3682-E3691.	3.3	51
16	The Mechanical Contribution of Vimentin to Cellular Stress Generation. Journal of Biomechanical Engineering, 2018, 140, .	0.6	7
17	Growth and remodeling play opposing roles during postnatal human heart valve development. Scientific Reports, 2018, 8, 1235.	1.6	18
18	Intrinsic Cell Stress is Independent of Organization in Engineered Cell Sheets. Cardiovascular Engineering and Technology, 2018, 9, 181-192.	0.7	10

SANDRA LOERAKKER

#	Article	IF	CITATIONS
19	Tissue alignment enhances remodeling potential of tendon-derived cells - Lessons from a novel microtissue model of tendon scarring. Matrix Biology, 2018, 65, 14-29.	1.5	38
20	Initial scaffold thickness affects the emergence of a geometrical and mechanical equilibrium in engineered cardiovascular tissues. Journal of the Royal Society Interface, 2018, 15, 20180359.	1.5	8
21	Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Science Translational Medicine, 2018, 10, .	5.8	142
22	A Bioreactor to Identify the Driving Mechanical Stimuli of Tissue Growth and Remodeling. Tissue Engineering - Part C: Methods, 2017, 23, 377-387.	1.1	14
23	Nondestructive mechanical characterization of developing biological tissues using inflation testing. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 438-447.	1.5	7
24	Prediction of Cell Alignment on Cyclically Strained Grooved Substrates. Biophysical Journal, 2016, 111, 2274-2285.	0.2	15
25	A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 58, 173-187.	1.5	55
26	Efficient computational simulation of actin stress fiber remodeling. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 1347-1358.	0.9	12
27	Age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling. Acta Biomaterialia, 2016, 29, 161-169.	4.1	47
28	Improved Geometry of Decellularized Tissue Engineered Heart Valves to Prevent Leaflet Retraction. Annals of Biomedical Engineering, 2016, 44, 1061-1071.	1.3	50
29	Pressure Induced Deep Tissue Injury Explained. Annals of Biomedical Engineering, 2015, 43, 297-305.	1.3	146
30	Computational model predicts cell orientation in response to a range of mechanical stimuli. Biomechanics and Modeling in Mechanobiology, 2014, 13, 227-236.	1.4	54
31	A physically motivated constitutive model for cell-mediated compaction and collagen remodeling in soft tissues. Biomechanics and Modeling in Mechanobiology, 2014, 13, 985-1001.	1.4	45
32	Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. Journal of Biomechanics, 2013, 46, 1792-1800.	0.9	73
33	How does muscle stiffness affect the internal deformations within the soft tissue layers of the buttocks under constant loading?. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 520-529.	0.9	25
34	Which factors influence the ability of a computational model to predict the <i>in vivo</i> deformation behaviour of skeletal muscle?. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 338-345.	0.9	11
35	Plasma variations of biomarkers for muscle damage in male nondisabled and spinal cord injured subjects. Journal of Rehabilitation Research and Development, 2012, 49, 361.	1.6	20
36	The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading. Journal of Applied Physiology, 2011, 111, 1168-1177.	1.2	115

SANDRA LOERAKKER

#	Article	IF	CITATIONS
37	Ischemiaâ€reperfusion injury in rat skeletal muscle assessed with <i>T</i> ₂ â€weighted and dynamic contrastâ€enhanced MRI. Magnetic Resonance in Medicine, 2011, 66, 528-537.	1.9	36
38	Temporal Effects of Mechanical Loading on Deformation-Induced Damage in Skeletal Muscle Tissue. Annals of Biomedical Engineering, 2010, 38, 2577-2587.	1.3	71
39	Diffusion of water in skeletal muscle tissue is not influenced by compression in a rat model of deep tissue injury. Journal of Biomechanics, 2010, 43, 570-575.	0.9	14
40	The importance of internal strain as opposed to interface pressure in the prevention of pressure related deep tissue injury. Journal of Tissue Viability, 2010, 19, 35-42.	0.9	78
41	A Mathematical Model to Evaluate Control Strategies for Mechanical Circulatory Support. Artificial Organs, 2009, 33, 593-603.	1.0	72