
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6976493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Volumetric data analysis enabled spatially resolved optoretinogram to measure the functional signals in the living retina. Journal of Biophotonics, 2022, 15, e202100252.	2.3	9
2	Contributed Session I: Towards clinically friendly optoretinography (ORG) using 100 kHz swept-source OCT without adaptive optics (AO). Journal of Vision, 2022, 22, 4.	0.3	0
3	Towards standardizing retinal optical coherence tomography angiography: a review. Light: Science and Applications, 2022, 11, 63.	16.6	52
4	CRISPR-based VEGF suppression using paired guide RNAs for treatment of choroidal neovascularization. Molecular Therapy - Nucleic Acids, 2022, 28, 613-622.	5.1	12
5	Extraction of phase-based optoretinograms (ORG) from serial B-scans acquired by clinical-grade raster scanning OCT system. , 2022, , .		0
6	Proto-clinical optoretinography using common, low-cost optical coherence tomography equipment. , 2022, , .		0
7	An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering. Computer Methods and Programs in Biomedicine, 2021, 201, 105949.	4.7	51
8	Polarization properties of retinal blood vessel walls measured with polarization sensitive optical coherence tomography. Biomedical Optics Express, 2021, 12, 4340.	2.9	8
9	In vivo multimodal retinal imaging of disease-related pigmentary changes in retinal pigment epithelium. Scientific Reports, 2021, 11, 16252.	3.3	40
10	Simultaneous directional full-field OCT using path-length and carrier multiplexing. Optics Express, 2021, 29, 32179.	3.4	5
11	Extraction of phase-based optoretinograms (ORG) from serial B-scans acquired over tens of seconds by mouse retinal raster scanning OCT system. Biomedical Optics Express, 2021, 12, 7849.	2.9	9
12	Progress in measurements and interpretation of light-evoked retinal function using OCT based optoretinography (ORG). , 2021, , .		0
13	Effects of intravitreal injection of human CD34+ bone marrow stem cells in a murine model of diabetic retinopathy. Experimental Eye Research, 2020, 190, 107865.	2.6	24
14	The <i>Atoh7</i> remote enhancer provides transcriptional robustness during retinal ganglion cell development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21690-21700.	7.1	36
15	In Situ Morphologic and Spectral Characterization of Retinal Pigment Epithelium Organelles in Mice Using Multicolor Confocal Fluorescence Imaging. , 2020, 61, 1.		16
16	Measurement of Diurnal Variation in Rod Outer Segment Length In Vivo in Mice With the OCT Optoretinogram. , 2020, 61, 9.		25
17	Sequential Targeting in Crosslinking Nanotheranostics for Tackling the Multibarriers of Brain Tumors. Advanced Materials, 2020, 32, e1903759.	21.0	39
18	Investigating the functional response of human cones and rods with a combined adaptive optics		2

SLO-OCT system. , 2020, , .

#	Article	IF	CITATIONS
19	Kilohertz retinal FF-SS-OCT and flood imaging with hardware-based adaptive optics. Biomedical Optics Express, 2020, 11, 5995.	2.9	17
20	Optoretinogram: optical measurement of human cone and rod photoreceptor responses to light. Optics Letters, 2020, 45, 4658.	3.3	60
21	Visible light OCT improves imaging through a highly scattering retinal pigment epithelial wall. Optics Letters, 2020, 45, 5945.	3.3	10
22	A Novel Reporter Mouse Uncovers Endogenous Brn3b Expression. International Journal of Molecular Sciences, 2019, 20, 2903.	4.1	5
23	Megahertz-rate optical coherence tomography angiography improves the contrast of the choriocapillaris and choroid in human retinal imaging. Biomedical Optics Express, 2019, 10, 50.	2.9	39
24	Directional optical coherence tomography reveals melanin concentration-dependent scattering properties of retinal pigment epithelium. Journal of Biomedical Optics, 2019, 24, 1.	2.6	46
25	Temporal speckle-averaging of optical coherence tomography volumes for in-vivo cellular resolution neuronal and vascular retinal imaging. Neurophotonics, 2019, 6, 1.	3.3	25
26	Novel window for cancer nanotheranostics: non-invasive ocular assessments of tumor growth and nanotherapeutic treatment efficacy in vivo. Biomedical Optics Express, 2019, 10, 151.	2.9	13
27	Aperture phase modulation with adaptive optics: a novel approach for speckle reduction and structure extraction in optical coherence tomography. Biomedical Optics Express, 2019, 10, 552.	2.9	17
28	Adaptive optics in the mouse eye: wavefront sensing based vs image-guided aberration correction. Biomedical Optics Express, 2019, 10, 4757.	2.9	15
29	Coextensive synchronized SLO-OCT with adaptive optics for human retinal imaging. Optics Letters, 2019, 44, 4219.	3.3	20
30	Functional retinal imaging using adaptive optics swept-source OCT at 16  MHz. Optica, 2019, 6, 300.	9.3	72
31	Multiscale Hessian filtering for enhancement of OCT angiography images. , 2019, , .		14
32	Progress in OCT based functional cellular resolution retinal imaging in mice: application of temporal super averaging. , 2019, , .		0
33	Loss of cone function without degeneration in a novel Gnat2 knock-out mouse. Experimental Eye Research, 2018, 171, 111-118.	2.6	30
34	Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations. Experimental Eye Research, 2018, 172, 86-93.	2.6	27
35	Intraframe motion correction for raster-scanned adaptive optics images using strip-based cross-correlation lag biases. PLoS ONE, 2018, 13, e0206052.	2.5	25
36	Monocyte infiltration rather than microglia proliferation dominates the early immune response to rapid photoreceptor degeneration. Journal of Neuroinflammation, 2018, 15, 344.	7.2	46

#	Article	IF	CITATIONS
37	Volumetric imaging of rod and cone photoreceptor structure with a combined adaptive optics-optical coherence tomography-scanning laser ophthalmoscope. Journal of Biomedical Optics, 2018, 23, 1.	2.6	23
38	Feasibility study of Raman spectroscopy for investigating the mouse retina in vivo. , 2018, , .		0
39	Adaptive optics with combined optical coherence tomography and scanning laser ophthalmoscopy for in vivo mouse retina imaging. , 2018, , .		0
40	Investigation of the effect of directional (off-axis) illumination on the reflectivity of retina layers in mice using swept-source optical coherence tomography. , 2018, , .		2
41	Protective Effect of Intravitreal Administration of Exosomes Derived from Mesenchymal Stem Cells on Retinal Ischemia. Current Eye Research, 2017, 42, 1358-1367.	1.5	81
42	In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2937-E2946.	7.1	106
43	Progress on wavefront sensorless adaptive optics. , 2017, , .		Ο
44	Light induced increases of photoreceptor layer reflectance in response to rhodopsin bleaching in mice measured in vivo with optical coherence tomography (Conference Presentation). , 2017, , .		0
45	Rapid monocyte infiltration following retinal detachment is dependent on non-canonical IL6 signaling through gp130. Journal of Neuroinflammation, 2017, 14, 121.	7.2	18
46	Advances in bone marrow stem cell therapy for retinal dysfunction. Progress in Retinal and Eye Research, 2017, 56, 148-165.	15.5	89
47	Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited]. Biomedical Optics Express, 2017, 8, 2536.	2.9	142
48	The Properties of Outer Retinal Band Three Investigated With Adaptive-Optics Optical Coherence Tomography. , 2017, 58, 4559.		36
49	Methods for non-surgical cancer nano-theranostics of ocular tumors in the mouse eye (Conference) Tj ETQq1 1	0.784314	rgBT /Overloc
50	Wide-field human photoreceptor morphological analysis using phase-resolved sensorless adaptive optics swept-source OCT (Conference Presentation). , 2017, , .		0
51	Intravitreal Administration of Human Bone Marrow CD34+ Stem Cells in a Murine Model of Retinal Degeneration. , 2016, 57, 4125.		34
52	A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future. , 2016, 57, OCT51.		121
53	The Photosensitivity of Rhodopsin Bleaching and Light-Induced Increases of Fundus Reflectance in Mice Measured In Vivo With Scanning Laser Ophthalmoscopy. , 2016, 57, 3650.		29
54	Phase-Variance Optical Coherence Tomographic Angiography Imaging of Choroidal Perfusion Changes Associated With Acute Posterior Multifocal Placoid Pigment Epitheliopathy. JAMA Ophthalmology, 2016, 134, 943.	2.5	18

#	Article	IF	CITATIONS
55	Two photon imaging of mouse retina with sensorless adaptive optics. , 2016, , .		Ο
56	Lens-based wavefront sensorless adaptive optics swept source OCT. Scientific Reports, 2016, 6, 27620.	3.3	39
57	Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice. Biomedical Optics Express, 2016, 7, 1.	2.9	51
58	Fluorescent scanning laser ophthalmoscopy for cellular resolution in vivo mouse retinal imaging: benefits and drawbacks of implementing adaptive optics. , 2016, , .		0
59	Coherence gated wavefront sensorless adaptive optics for two photon excited fluorescence retinal imaging (Conference Presentation). , 2016, , .		Ο
60	Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging. Scientific Reports, 2016, 6, 32223.	3.3	25
61	Visualization of chorioretinal vasculature in mice in vivo using a combined OCT/SLO imaging system. , 2016, , .		1
62	Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid. Biomedical Optics Express, 2016, 7, 911.	2.9	122
63	Wavefront sensorless approaches to adaptive optics for in vivo fluorescence imaging of mouse retina. , 2016, , .		Ο
64	Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging. Proceedings of SPIE, 2016, , .	0.8	0
65	New Developments in Murine Imaging for Assessing Photoreceptor Degeneration In Vivo. Advances in Experimental Medicine and Biology, 2016, 854, 269-275.	1.6	2
66	Combined Volume Registration and Visualization. Mathematics and Visualization, 2016, , 73-91.	0.6	0
67	Abstract 4226: The rodent eye as a non-invasive window for understanding cancer nanotherapeutics. , 2016, , .		0
68	Depth Resolved Aberration Correction with Wavefront Sensorless Adaptive Optics Optical Coherence Tomography. , 2015, , .		0
69	Author Response: Outer Retinal Bands. , 2015, 56, 2507.		12
70	Intravitreal Autologous Bone Marrow CD34+ Cell Therapy for Ischemic and Degenerative Retinal Disorders: Preliminary Phase 1 Clinical Trial Findings. Investigative Ophthalmology and Visual Science, 2015, 56, 81-89.	3.3	141
71	Detection of pigment epithelial detachment vascularization in age-related macular degeneration using phase-variance OCT angiography. Clinical Ophthalmology, 2015, 9, 1299.	1.8	4
72	Comparison of a novel adaptive lens with deformable mirrors and its application in high-resolution in-		0

#	Article	IF	CITATIONS
73	Multispectral scanning laser ophthalmoscopy combined with optical coherence tomography for simultaneous <i>in vivo</i> mouse retinal imaging. Proceedings of SPIE, 2015, , .	0.8	2
74	Automatic optimization high-speed high-resolution OCT retinal imaging at $1^{1/4}$ m. , 2015, , .		0
75	<i>In vivo</i> wide-field multispectral scanning laser ophthalmoscopy–optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature. Journal of Biomedical Optics, 2015, 20, 126005.	2.6	64
76	Effect of scanning beam size on the lateral resolution of mouse retinal imaging with SLO. Optics Letters, 2015, 40, 5830.	3.3	20
77	In vivo volumetric depth-resolved vasculature imaging of human limbus and sclera with 1 μm swept source phase-variance optical coherence angiography. Journal of Optics (United Kingdom), 2015, 17, 065301.	2.2	9
78	Progress on developing wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice. Proceedings of SPIE, 2015, , .	0.8	0
79	Performance of a combined optical coherence tomography and scanning laser ophthalmoscope with adaptive optics for human retinal imaging applications. Proceedings of SPIE, 2015, , .	0.8	2
80	Retinal AO OCT. , 2015, , 1849-1920.		4
81	En faceprojection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods. , 2015, , .		2
82	In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography. Biomedical Optics Express, 2015, 6, 580.	2.9	57
83	Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. Biomedical Optics Express, 2015, 6, 2191.	2.9	53
84	Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Optics Express, 2015, 23, 21931.	3.4	72
85	Wavefront Sensorless Adaptive Optics for Ophthalmic Imaging. , 2015, , .		0
86	En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods. , 2015, , .		0
87	The Cellular Origins of the Outer Retinal Bands in Optical Coherence Tomography Images. Investigative Ophthalmology and Visual Science, 2014, 55, 7904-7918.	3.3	141
88	In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography. Journal of Biomedical Optics, 2014, 19, 1.	2.6	24
89	Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 322-333.	2.9	21
90	Improvedin vivoimaging of human blood circulation in the chorioretinal complex using phase variance method with new phase stabilized 1 μm swept-source optical coherence tomography (pv-SSOCT). , 2014, , .		0

#	Article	IF	CITATIONS
91	Evaluation of state-of-the-art imaging systems forin vivomonitoring of retinal structure in mice: current capabilities and limitations. , 2014, , .		5
92	AO-OCT for in vivo mouse retinal imaging: Application of adaptive lens in wavefornt sensorless aberration correction. , 2014, , .		1
93	Evaluation of OCT for quantitative in-vivo measurements of changes in neural tissue scattering in longitudinal studies of retinal degeneration in mice. Proceedings of SPIE, 2014, , .	0.8	3
94	Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice. Biomedical Optics Express, 2014, 5, 547.	2.9	91
95	THE DOSE-DEPENDENT MACULAR THICKNESS CHANGES ASSESSED BY FD-OCT IN PATIENTS WITH RETINITIS PIGMENTOSA TREATED WITH CILIARY NEUROTROPHIC FACTOR. Retina, 2014, 34, 1384-1390.	1.7	6
96	Improving visual outcomes by preserving outer retina morphology in eyes with resolved pseudophakic cystoid macular edema. Journal of Cataract and Refractive Surgery, 2014, 40, 626-631.	1.5	30
97	Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1. Vision Research, 2014, 102, 71-79.	1.4	37
98	Phase-Variance Optical Coherence Tomography. Ophthalmology, 2014, 121, 180-187.	5.2	238
99	Macular pigment and macular volume in eyes of patients with cystic fibrosis. Free Radical Research, 2014, 48, 740-748.	3.3	2
100	Progress on cellular resolution retinal imaging: setting the stage for translation between clinical and basic science. , 2014, , .		0
101	Optical imaging of the chorioretinal vasculature in the living human eye. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14354-14359.	7.1	189
102	Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography. Journal of Biomedical Optics, 2013, 18, 086002.	2.6	19
103	Ultrahigh-speed ultrahigh-resolution adaptive optics: optical coherence tomography system for in-vivo small animal retinal imaging. Proceedings of SPIE, 2013, , .	0.8	0
104	Visualization of human retinal and choroidal vascular networks with phase-variance optical coherence tomography. , 2013, , .		0
105	Reflective afocal adaptive optics: optical coherence tomography retinal imaging system. , 2013, , .		1
106	Application of full range swept source optical coherence tomography for imaging of the anterior eye segment in patients with type I Boston Keratoprosthesis. Proceedings of SPIE, 2013, , .	0.8	0
107	Development of a corneal tissue phantom for anterior chamber optical coherence tomography (AC-OCT). Proceedings of SPIE, 2013, , .	0.8	1
108	Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography. Biomedical Optics Express, 2013, 4, 2508.	2.9	53

#	Article	IF	CITATIONS
109	Adaptive optics optical coherence tomography for <i>in vivo</i> mouse retinal imaging. Journal of Biomedical Optics, 2013, 18, 056007.	2.6	52
110	Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography. Optics Letters, 2013, 38, 4801.	3.3	40
111	FIVE-YEAR FOLLOW-UP OF MACULAR MORPHOLOGIC CHANGES AFTER RHEGMATOGENOUS RETINAL DETACHMENT REPAIR. Retina, 2013, 33, 2049-2058.	1.7	27
112	Spotlight Summary: Quantitative Fundus Autofluorescence and A2E Increase With Aging in Wild-Type and "Stargardt―Mice. , 2013, 54, 2991.		0
113	Publisher's Note: Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography. Journal of Biomedical Optics, 2013, 18, 089802.	2.6	0
114	Multimodal Assessment of Microscopic Morphology and Retinal Function in Patients With Geographic Atrophy. , 2013, 54, 4372.		59
115	Staging of Macular Telangiectasia: Power-Doppler Optical Coherence Tomography and Macular Pigment Optical Density. , 2013, 54, 4459.		25
116	Clinical Applications of High Resolution In-Vivo Retinal Imaging. Journal of Ophthalmology, 2013, 2013, 1-2.	1.3	2
117	Complex conjugate artifact-free adaptive optics optical coherence tomography of in vivo human optic nerve head. Journal of Biomedical Optics, 2012, 17, 1.	2.6	10
118	Visualization of human retinal capillary networks: a comparison of intensity, speckle-variance and phase-variance optical coherence tomography. Proceedings of SPIE, 2012, , .	0.8	0
119	In-vivo imaging of inner retinal cellular morphology with adaptive optics - optical coherence tomography: challenges and possible solutions. Proceedings of SPIE, 2012, , .	0.8	1
120	New Directions in Ophthalmic Optical Coherence Tomography. Optometry and Vision Science, 2012, 89, 524-542.	1.2	62
121	VISUAL OUTCOME CORRELATES WITH INNER MACULAR VOLUME IN EYES WITH SURGICALLY CLOSED MACULAR HOLE. Retina, 2012, 32, 2085-2095.	1.7	23
122	Adaptive optics: optical coherence tomography system for in-vivo imaging of the mouse retina. Proceedings of SPIE, 2012, , .	0.8	2
123	Noninvasive Imaging of the Foveal Avascular Zone with High-Speed, Phase-Variance Optical Coherence Tomography. , 2012, 53, 85.		97
124	Photoreceptor Imaging. Ophthalmology, 2012, 119, 430-431.	5.2	0
125	New developments in eye models with retina tissue phantoms for ophthalmic optical coherence tomography. Proceedings of SPIE, 2012, , .	0.8	8
126	In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomedical Optics Express, 2011, 2, 1504.	2.9	218

#	Article	IF	CITATIONS
127	Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging. Biomedical Optics Express, 2011, 2, 1674.	2.9	110
128	Introduction: Feature Issue on Cellular Imaging of the Retina. Biomedical Optics Express, 2011, 2, 1778.	2.9	1
129	Correction of eye-motion artifacts in AO-OCT data sets. Proceedings of SPIE, 2011, , .	0.8	7
130	High-Resolution Fourier-Domain Optical Coherence Tomography Findings in Vitelliform Detachment Associated with Basal Laminar Drusen. Retina, 2011, 31, 812-814.	1.7	6
131	The effect of collimator lenses on the performance of an optical coherence tomography system. Proceedings of SPIE, 2011, , .	0.8	0
132	TEN-YEAR FOLLOW-UP OF EYES TREATED WITH STEREOTACTIC FRACTIONATED EXTERNAL BEAM RADIATION FOR NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina, 2011, 31, 1303-1315.	1.7	16
133	Visualization of human retinal micro-capillaries with phase contrast high-speed optical coherence tomography. , 2011, , .		1
134	Outer retinal abnormalities associated with inner retinal pathology in nonglaucomatous and glaucomatous optic neuropathies. Eye, 2011, 25, 279-289.	2.1	62
135	Fourier-domain optical coherence tomography of eyes with idiopathic epiretinal membrane: correlation between macular morphology and visual function. Eye, 2011, 25, 775-783.	2.1	37
136	AO-OCT with reference arm phase shifting for complex conjugate artifact-free imaging of in vivo retinal structures. , 2011, , .		0
137	Application of a new high-speed magnetic deformable mirror for in-vivo retinal imaging. Proceedings of SPIE, 2011, , .	0.8	3
138	Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging. British Journal of Ophthalmology, 2011, 95, 131-141.	3.9	103
139	Adaptive Optics Techniques Used for In Vivo Examination of the Retina and Visual System. , 2011, , .		0
140	Three-dimensional cellular resolution in-vivo retinal imaging. , 2011, , .		0
141	Performance of 97-elements ALPAO membrane magnetic deformable mirror in Adaptive Optics - Optical Coherence Tomography system for in vivo imaging of human retina. Photonics Letters of Poland, 2011, 3, .	0.4	0
142	Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology. Proceedings of SPIE, 2010, , .	0.8	7
143	High-Resolution Fourier-Domain Optical Coherence Tomography of Choroidal Neovascular Membranes Associated with Age-Related Macular Degeneration. , 2010, 51, 4200.		23
144	MACULOPATHY DIAGNOSED WITH HIGH-RESOLUTION FOURIER-DOMAIN OPTICAL COHERENCE TOMOGRAPHY IN EYES WITH PREVIOUSLY UNEXPLAINED VISUAL LOSS. Retinal Cases and Brief Reports, 2010, 4, 233-239.	0.6	1

#	Article	IF	CITATIONS
145	Evaluation of complex conjugate artifact removal methods used in spectrometer-based Fourier-domain optical coherence tomography systems: a comparative study. , 2010, , .		0
146	Comparison of phase-shifting techniques for in vivo full-range, high-speed Fourier-domain optical coherence tomography. Journal of Biomedical Optics, 2010, 15, 056011.	2.6	20
147	Retinal imaging with a combined adaptive optics/optical coherence tomography and adaptive optics/scanning laser ophthalmoscopy system. , 2010, , .		5
148	Optical Coherence Tomography Findings of Exophytic Retinal Capillary Hemangiomas of the Posterior Pole. Ophthalmic Surgery, Lasers and Imaging, 2010, , 1-5.	0.5	7
149	Microstructural Abnormalities Revealed by High Resolution Imaging Systems in Central Macular Arteriovenous Malformation. Ophthalmic Surgery, Lasers and Imaging, 2010, , 1-4.	0.5	6
150	Optical coherence tomography and Raman spectroscopy of the <i>exâ€vivo</i> retina. Journal of Biophotonics, 2009, 2, 398-406.	2.3	38
151	Detailed analysis of retinal function and morphology in a patient with autosomal recessive bestrophinopathy (ARB). Documenta Ophthalmologica, 2009, 118, 239-246.	2.2	54
152	Retinal microstructure in patients with EFEMP1 retinal dystrophy evaluated by Fourier domain OCT. Eye, 2009, 23, 480-483.	2.1	18
153	High-resolution retinal imaging in young children using a handheld scanner and Fourier-domain optical coherence tomography. Journal of AAPOS, 2009, 13, 72-74.e1.	0.3	32
154	Cellular resolution volumetric in vivo retinal imaging with adaptive optics–optical coherence tomography. Optics Express, 2009, 17, 4084.	3.4	100
155	Error budget analysis for an Adaptive Optics Optical Coherence Tomography System. Optics Express, 2009, 17, 13768.	3.4	30
156	Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. Optics Express, 2009, 17, 22190.	3.4	198
157	MICROCYSTOID MACULOPATHY ASSOCIATED WITH TAMOXIFEN USE DIAGNOSED BY HIGH-RESOLUTION FOURIER-DOMAIN OPTICAL COHERENCE TOMOGRAPHY. Retinal Cases and Brief Reports, 2009, 3, 33-35.	0.6	22
158	Optical coherence tomography and Raman spectroscopy of the retina. , 2009, , .		0
159	FINE RETINAL STRIAE ASSOCIATED WITH EPIRETINAL MEMBRANE VISUALIZED USING ADAPTIVE OPTICS. Retinal Cases and Brief Reports, 2009, 3, 233-23.	0.6	7
160	Performance of a MEMS-based AO-OCT system using Fourier reconstruction. , 2009, , .		0
161	Comparison of real-time visualization of volumetric OCT data sets by CPU-slicing and GPU-ray casting methods. Proceedings of SPIE, 2009, , .	0.8	1
162	Combined adaptive optics: optical coherence tomography and adaptive optics: scanning laser ophthalmoscopy system for retinal imaging. , 2009, , .		2

#	Article	IF	CITATIONS
163	Imaging the Eye: Interview with Robert Zawadzki. SPIE Newsroom, 2009, , .	0.1	Ο
164	Retinal morphology in patients with BBS1 and BBS10 related Bardet–Biedl Syndrome evaluated by Fourier-domain optical coherence tomography. Vision Research, 2008, 48, 392-399.	1.4	49
165	High-resolution Fourier-Domain Optical Coherence Tomography and Microperimetric Findings After Macula-off Retinal Detachment Repair. Ophthalmology, 2008, 115, 1923-1929.e1.	5.2	88
166	Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography. Optics Letters, 2008, 33, 22.	3.3	119
167	Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction. Optics Express, 2008, 16, 8126.	3.4	221
168	Performance of a MEMS-based AO-OCT system. Proceedings of SPIE, 2008, , .	0.8	0
169	Visual Insignificance of the Foveal Pit. JAMA Ophthalmology, 2008, 126, 907.	2.4	187
170	Compact MEMS-based adaptive optics: optical coherence tomography for clinical use. , 2008, , .		0
171	A microstructural retinal analysis of membrano-proliferative glomerulonephritis type II. British Journal of Ophthalmology, 2008, 92, 1150-1151.	3.9	2
172	Changes in Cellular Structures Revealed by Ultra-high Resolution Retinal Imaging in Optic Neuropathies. , 2008, 49, 2103.		73
173	Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view. , 2008, , .		6
174	Fourier-Domain Optical Coherence Tomography and Adaptive Optics Reveal Nerve Fiber Layer Loss and Photoreceptor Changes in a Patient With Optic Nerve Drusen. Journal of Neuro-Ophthalmology, 2008, 28, 120-125.	0.8	34
175	Challenges and possibilities for developing adaptive optics: ultra-high resolution optical coherence tomography for clinical in vivo retinal imaging. Proceedings of SPIE, 2008, , .	0.8	0
176	Ultra-high resolution adaptive optics: optical coherence tomography for in vivo imaging of healthy and diseased retinal structures. Proceedings of SPIE, 2008, , .	0.8	0
177	Retinal Morphological Changes of Patients With X-linked Retinoschisis Evaluated by Fourier-Domain Optical Coherence Tomography. JAMA Ophthalmology, 2008, 126, 807.	2.4	64
178	Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina <i>in vivo</i> . Expert Review of Ophthalmology, 2007, 2, 1019-1035.	0.6	47
179	Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation. Journal of Biomedical Optics, 2007, 12, 041214.	2.6	29
180	Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets. Journal of Biomedical Optics, 2007, 12, 041206.	2.6	57

#	Article	IF	CITATIONS
181	Visualization of Lipofuscin Accumulation in Stargardt Macular Dystrophy by High-Resolution Fourier-Domain Optical Coherence Tomography. JAMA Ophthalmology, 2007, 125, 575.	2.4	18
182	Application of adaptive optics: optical coherence tomography for in vivo imaging of microscopic structures in the retina and optic nerve head. , 2007, , .		1
183	Ultrahigh-resolution adaptive optics - optical coherence tomography: toward isotropic 3 μm resolution for in vivo retinal imaging. , 2007, , .		1
184	Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging. , 2007, , .		24
185	HIGH RESOLUTION FOURIER-DOMAIN OPTICAL COHERENCE TOMOGRAPHY OF RETINAL ANGIOMATOUS PROLIFERATION. Retina, 2007, 27, 915-925.	1.7	56
186	Adaptive optics ophthalmologic systems using dual deformable mirrors. , 2007, , .		3
187	Development of quantitative diagnostic observables for age-related macular degeneration using Spectral Domain OCT. , 2007, , .		3
188	Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 1373.	1.5	120
189	Segmentation of Three-dimensional Retinal Image Data. IEEE Transactions on Visualization and Computer Graphics, 2007, 13, 1719-1726.	4.4	72
190	High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. Optics Express, 2006, 14, 4380.	3.4	257
191	Clinical Application of Rapid Serial Fourier-Domain Optical Coherence Tomography for Macular Imaging. Ophthalmology, 2006, 113, 1425-1431.	5.2	170
192	Adaptive optics - optical coherence tomography for in vivo retinal imaging: effects of spectral bandwidth on image quality. , 2006, , .		0
193	3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures. , 2006, , .		6
194	Adaptive optics-optical coherence tomography for in vivo retinal imaging: comparative analysis of two wavefront correctors. , 2006, 6079, 38.		1
195	Motion-free volumetric retinal imaging with adaptive optics spectral-domain optical coherence tomography. , 2006, 6138, 613802.		0
196	Two deformable mirror adaptive optics system for in vivo retinal imaging with optical coherence tomography. , 2006, , .		1
197	Adaptive-optics optical coherence tomography for high-resolution and high-speed in vivo retinal imaging. , 2005, , .		0
198	Exposure time dependence of image quality in high-speed retinal in vivo Fourier domain OCT. , 2005, , .		3

#	Article	IF	CITATIONS
199	Rapid volumetric imaging of the human retina in vivo using a low-cost spectral domain optical coherence tomography system. , 2005, , .		0
200	Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Optics Express, 2005, 13, 8532.	3.4	477
201	Adaptive-Optics High-Resolution and High-Speed Retinal in vivo Fourier-Domain OCT. , 2005, , .		0
202	Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Optics Express, 2003, 11, 3116.	3.4	472
203	Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm. , 2003, , .		9
204	Glucose dispersion measurement using white-light LCI. , 2003, 4956, 348.		3
205	Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique. Optics Communications, 2002, 204, 67-74.	2.1	60
206	Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography. Optics Express, 2001, 9, 610.	3.4	122
207	<title>New dispersion compensation technique for Partial Coherence Interferometry (PCI) and Optical
Coherence Tomography (OCT)</title> . , 2001, 4431, 12.		2