Sushil K Jain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6976429/publications.pdf Version: 2024-02-01

SUSHILK IAIN

#	Article	IF	CITATIONS
1	Hydrogen Sulfide Regulates Irisin and Glucose Metabolism in Myotubes and Muscle of HFD-Fed Diabetic Mice. Antioxidants, 2022, 11, 1369.	2.2	8
2	Reduced 25(OH) Vitamin D Association with Lower Alpha-1-Antitrypsin Blood Levels in Type 2 Diabetic Patients. Journal of the American College of Nutrition, 2021, 40, 98-103.	1.1	11
3	G6PD deficiency shifts polarization of monocytes/macrophages towards a proinflammatory and profibrotic phenotype. Cellular and Molecular Immunology, 2021, 18, 770-772.	4.8	13
4	<scp>l</scp> -Cysteine Stimulates the Effect of Vitamin D on Inhibition of Oxidative Stress, IL-8, and MCP-1 Secretion in High Glucose Treated Monocytes. Journal of the American College of Nutrition, 2021, 40, 327-332.	1.1	17
5	Novel Invasive and Noninvasive Cardiac-Specific Biomarkers in Obesity and Cardiovascular Diseases. Metabolic Syndrome and Related Disorders, 2020, 18, 10-30.	0.5	50
6	Glucose-6-Phosphate Dehydrogenase Deficiency Activates Endothelial Cell and Leukocyte Adhesion Mediated via the TGFβ/NADPH Oxidases/ROS Signaling Pathway. International Journal of Molecular Sciences, 2020, 21, 7474.	1.8	16
7	The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free Radical Biology and Medicine, 2020, 161, 84-91.	1.3	55
8	Can Vitamin D and L-Cysteine Co-Supplementation Reduce 25(OH)-Vitamin D Deficiency and the Mortality Associated with COVID-19 in African Americans?. Journal of the American College of Nutrition, 2020, 39, 694-699.	1.1	35
9	l-Cysteine and Vitamin D Co-Supplementation Alleviates Markers of Musculoskeletal Disorders in Vitamin D-Deficient High-Fat Diet-Fed Mice. Nutrients, 2020, 12, 3406.	1.7	11
10	L-cysteine Supplementation Increases Blood Levels of Hydrogen Sulfide and Nitrite, and Decreases Insulin Resistance and Vascular Inflammation in Zucker Diabetic Rats. Current Developments in Nutrition, 2020, 4, nzaa045_038.	0.1	0
11	Glucose-6-phosphate dehydrogenase (G6PD) deficiency is linked with cardiovascular disease. Hypertension Research, 2020, 43, 582-584.	1.5	15
12	Hydrogen sulfide regulates circadian-clock genes in C2C12 myotubes and the muscle of high-fat-diet-fed mice. Archives of Biochemistry and Biophysics, 2019, 672, 108054.	1.4	13
13	Glutathione deficiency induces epigenetic alterations of vitamin D metabolism genes in the livers of high-fat diet-fed obese mice. Scientific Reports, 2019, 9, 14784.	1.6	54
14	Hyperglycemia (high-glucose) decreases l-cysteine and glutathione levels in cultured monocytes and blood of Zucker diabetic rats. Molecular and Cellular Biochemistry, 2019, 459, 151-156.	1.4	5
15	Glutathione deficiency alters the vitamin D-metabolizing enzymes CYP27B1 and CYP24A1 in human renal proximal tubule epithelial cells and kidney of HFD-fed mice. Free Radical Biology and Medicine, 2019, 131, 376-381.	1.3	30
16	Glucose-6-phosphate dehydrogenase deficiency increases cell adhesion molecules and activates human monocyte-endothelial cell adhesion: Protective role of l-cysteine. Archives of Biochemistry and Biophysics, 2019, 663, 11-21.	1.4	30
17	l-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes. Amino Acids, 2018, 50, 909-921.	1.2	26
18	Hydrogen sulfide increases glutathione biosynthesis, and glucose uptake and utilisation in C ₂ C ₁₂ mouse myotubes. Free Radical Research, 2018, 52, 288-303.	1.5	53

#	Article	IF	CITATIONS
19	1,25(OH)2-vitamin D3 upregulates glucose uptake mediated by SIRT1/IRS1/GLUT4 signaling cascade in C2C12 myotubes. Molecular and Cellular Biochemistry, 2018, 444, 103-108.	1.4	30
20	Glutathione Stimulates Vitamin D Regulatory and Glucose-Metabolism Genes, Lowers Oxidative Stress and Inflammation, and Increases 25-Hydroxy-Vitamin D Levels in Blood: A Novel Approach to Treat 25-Hydroxyvitamin D Deficiency. Antioxidants and Redox Signaling, 2018, 29, 1792-1807.	2.5	69
21	Vitamin D supplementation inhibits oxidative stress and upregulate SIRT1/AMPK/GLUT4 cascade in high glucose-treated 3T3L1 adipocytes and in adipose tissue of high fat diet-fed diabetic mice. Archives of Biochemistry and Biophysics, 2017, 615, 22-34.	1.4	130
22	Manganese supplementation increases adiponectin and lowers ICAM-1 and creatinine blood levels in Zucker type 2 diabetic rats, and downregulates ICAM-1 by upregulating adiponectin multimerization protein (DsbA-L) in endothelial cells. Molecular and Cellular Biochemistry, 2017, 429, 1-10.	1.4	12
23	l -Cysteine supplementation increases insulin sensitivity mediated by upregulation of GSH and adiponectin in high glucose treated 3T3-L1 adipocytes. Archives of Biochemistry and Biophysics, 2017, 630, 54-65.	1.4	18
24	Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. International Journal of Molecular Sciences, 2017, 18, 1321.	1.8	771
25	Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radical Biology and Medicine, 2016, 95, 268-277.	1.3	135
26	Lâ€cysteine supplementation upregulates glutathione (GSH) and vitamin D binding protein (VDBP) in hepatocytes cultured in high glucose and in vivo in liver, and increases blood levels of GSH, VDBP, and 25â€hydroxyâ€vitamin D in Zucker diabetic fatty rats. Molecular Nutrition and Food Research, 2016, 60, 1090-1098.	1.5	35
27	Resting Heart Rate Variability, Inflammation, and Insulin Resistance in Overweight and Obese Adolescents. Metabolic Syndrome and Related Disorders, 2016, 14, 291-297.	0.5	25
28	l-Cysteine supplementation increases adiponectin synthesis and secretion, and GLUT4 and glucose utilization by upregulating disulfide bond A-like protein expression mediated by MCP-1 inhibition in 3T3-L1 adipocytes exposed to high glucose. Molecular and Cellular Biochemistry, 2016, 414, 105-113.	1.4	19
29	1,25(OH) 2 D 3 inhibits oxidative stress and monocyte adhesion by mediating the upregulation of GCLC and GSH in endothelial cells treated with acetoacetate (ketosis). Journal of Steroid Biochemistry and Molecular Biology, 2016, 159, 94-101.	1.2	48
30	Altered cord blood lipid profile, insulin resistance & growth restriction during the perinatal period & its potential role in the risk of developing cardiovascular disease later in life. Indian Journal of Medical Research, 2016, 144, 151.	0.4	3
31	Role of Hyperketonemia in Inducing Oxidative Stress and Cellular Damage in Cultured Hepatocytes and Type 1 Diabetic Rat Liver. Cellular Physiology and Biochemistry, 2015, 37, 2160-2170.	1.1	20
32	Phosphatidylinositol-3,4,5-Triphosphate and Cellular Signaling: Implications for Obesity and Diabetes. Cellular Physiology and Biochemistry, 2015, 35, 1253-1275.	1.1	60
33	Hyperketonemia (Acetoacetate) Upregulates NADPH Oxidase 4 and Elevates Oxidative Stress, ICAM-1, and Monocyte Adhesivity in Endothelial Cells. Cellular Physiology and Biochemistry, 2015, 35, 364-373.	1.1	52
34	Can <scp>l</scp> -Cysteine and Vitamin D Rescue Vitamin D and Vitamin D Binding Protein Levels in Blood Plasma of African American Type 2 Diabetic Patients?. Antioxidants and Redox Signaling, 2015, 23, 688-693.	2.5	22
35	Effect of Hyperketonemia (Acetoacetate) on Nuclear Factor-κB and p38 Mitogen-Activated Protein Kinase Activation Mediated Intercellular Adhesion Molecule 1 Upregulation in Endothelial Cells. Metabolic Syndrome and Related Disorders, 2015, 13, 71-77.	0.5	10
36	Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metabolic Syndrome and Related Disorders, 2015, 13, 423-444.	0.5	670

#	Article	IF	CITATIONS
37	Vitamin D (VD) prevents oxidative stress via regulating NOX4/Nrf2/Trx signaling cascade and upregulates SIRT1â€mediated AMPK/IRS1/GLUT4 pathway and glucose uptake in high glucose treated 3T3L1 adipocytes. FASEB Journal, 2015, 29, 253.1.	0.2	5
38	L―Cysteine Supplementation Increases Adiponectin Synthesis and Secretion by Upregulating Disulfide Bond Aâ€like Protein in 3T3â€L1 Adipocytes Exposed to High Glucose. FASEB Journal, 2015, 29, LB290.	0.2	0
39	Vitamin D Inhibits ROS, ICAMâ€1, and Monocyte Adhesion in High Glucose and Acetoacetate Treated Endothelial Cells by Upregulating GSH. FASEB Journal, 2015, 29, 253.8.	0.2	Ο
40	Vitamin D and L-cysteine levels correlate positively with GSH and negatively with insulin resistance levels in the blood of type 2 diabetic patients. European Journal of Clinical Nutrition, 2014, 68, 1148-1153.	1.3	65
41	Effect of PIP3 on Adhesion Molecules and Adhesion of THP-1 Monocytes to HUVEC Treated with High Glucose. Cellular Physiology and Biochemistry, 2014, 33, 1197-1204.	1.1	15
42	Hydrogen Sulfide Upregulates Glutamate–Cysteine Ligase Catalytic Subunit, Glutamate–Cysteine Ligase Modifier Subunit, and Glutathione and Inhibits Interleukin-1β Secretion in Monocytes Exposed to High Glucose Levels. Metabolic Syndrome and Related Disorders, 2014, 12, 299-302.	0.5	26
43	l-Cysteine supplementation reduces high-glucose and ketone-induced adhesion of monocytes to endothelial cells by inhibiting ROS. Molecular and Cellular Biochemistry, 2014, 391, 251-256.	1.4	14
44	Decreased Cystathionine-γ-lyase (CSE) Activity in Livers of Type 1 Diabetic Rats and Peripheral Blood Mononuclear Cells (PBMC) of Type 1 Diabetic Patients. Journal of Biological Chemistry, 2014, 289, 11767-11778.	1.6	61
45	The link between vitamin D metabolism and sleep medicine. Sleep Medicine Reviews, 2014, 18, 311-319.	3.8	106
46	Intraoperative and Postoperative Blood Glucose Concentrations in Diabetic Surgical Patients Receiving Lactated Ringer's Versus Normal Saline: A Retrospective Review of Medical Records. Ochsner Journal, 2014, 14, 175-8.	0.5	4
47	PIP3 but not PIP2 increases GLUT4 surface expression and glucose metabolism mediated by AKT/PKCζ∫λ phosphorylation in 3T3L1 adipocytes. Molecular and Cellular Biochemistry, 2013, 381, 291-299.	1.4	23
48	Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and CSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochemical and Biophysical Research Communications, 2013, 437, 7-11.	1.0	182
49	In African American Type 2 Diabetic Patients, Is Vitamin D Deficiency Associated with Lower Blood Levels of Hydrogen Sulfide and Cyclic Adenosine Monophosphate, and Elevated Oxidative Stress?. Antioxidants and Redox Signaling, 2013, 18, 1154-1158.	2.5	37
50	Beneficial Role of L-Cysteine and H ₂ S Rich Fruits and Vegetables in Diabetic Pathophysiology. ACS Symposium Series, 2013, , 147-157.	0.5	1
51	L-cysteine and hydrogen sulfide increase PIP3 and AMPK/PPARÎ ³ expression and decrease ROS and vascular inflammation markers in high glucose treated human U937 monocytes. Journal of Cellular Biochemistry, 2013, 114, 2334-2345.	1.2	70
52	Vitamin D up-regulates glucose transporter 4 (GLUT4) translocation and glucose utilization mediated by cystathionine-l³-lyase (CSE) activation and H2S formation in 3T3L1 adipocytes Journal of Biological Chemistry, 2013, 288, 24871.	1.6	1
53	Manganese Supplementation Reduces High Glucose-induced Monocyte Adhesion to Endothelial Cells and Endothelial Dysfunction in Zucker Diabetic Fatty Rats. Journal of Biological Chemistry, 2013, 288, 6409-6416.	1.6	39
54	Diabetic and non-diabetic human cornea and tear γ-glutamyl transpeptidase activity. Clinical Ophthalmology, 2013, 7, 99.	0.9	6

#	Article	IF	CITATIONS
55	Hyperketonemia induces upregulation of LFA-1 in monocytes, which is mediated by ROS and P38 MAPK activation. Canadian Journal of Physiology and Pharmacology, 2012, 90, 1642-1646.	0.7	9
56	The Effect of Sleep Apnea and Insomnia on Blood Levels of Leptin, Insulin Resistance, IP-10, and Hydrogen Sulfide in Type 2 Diabetic Patients. Metabolic Syndrome and Related Disorders, 2012, 10, 331-336.	0.5	35
57	Decreased Hepatic Phosphatidylinositol-3,4,5-Triphosphate (PIP3) Levels and Impaired Glucose Homeostasis in Type 1 and Type 2 Diabetic Rats. Cellular Physiology and Biochemistry, 2012, 30, 1363-1370.	1.1	23
58	Elevated Acetoacetate and Monocyte Chemotactic Protein-1 Levels in Cord Blood of Infants of Diabetic Mothers. Neonatology, 2012, 102, 163-168.	0.9	26
59	Vitamin D Up-regulates Glucose Transporter 4 (GLUT4) Translocation and Glucose Utilization Mediated by Cystathionine-γ-lyase (CSE) Activation and H2S Formation in 3T3L1 Adipocytes. Journal of Biological Chemistry, 2012, 287, 42324-42332.	1.6	131
60	Relationship between hydrogen sulfide levels and HDL-cholesterol, adiponectin, and potassium levels in the blood of healthy subjects. Atherosclerosis, 2012, 225, 242-245.	0.4	40
61	<scp>L</scp> -Cysteine supplementation as an adjuvant therapy for type-2 diabetes. Canadian Journal of Physiology and Pharmacology, 2012, 90, 1061-1064.	0.7	28
62	Effect of chromium dinicocysteinate supplementation on circulating levels of insulin, <scp>TNF</scp> â€i±, oxidative stress, and insulin resistance in type 2 diabetic subjects: Randomized, doubleâ€blind, placeboâ€controlled study. Molecular Nutrition and Food Research, 2012, 56, 1333-1341.	1.5	59
63	Manganese downregulates ICAMâ€∎ expression in endothelial cells treated with high glucose. FASEB Journal, 2012, 26, 1026.1.	0.2	0
64	Toll-like receptor-4 and vascular inflammation in diabetes: Editorial. Cytokine, 2011, 55, 446-447.	1.4	12
65	Effect of prematurity on protein glycosylation in the newborn. Pediatrics International, 2011, 53, 480-482.	0.2	0
66	Oxidative stress, insulin signaling, and diabetes. Free Radical Biology and Medicine, 2011, 50, 567-575.	1.3	1,064
67	Hyperketonemia decreases mitochondrial membrane potential and its normalization with chromium (III) supplementation in monocytes. Molecular and Cellular Biochemistry, 2011, 349, 77-82.	1.4	11
68	Effects of High Glucose and Ketosis (Acetoacetate, ß-Hydroxybutyrate) on PAI-1 Secretion in Human Umbilical Vascular Endothelial Cells. Clinical and Applied Thrombosis/Hemostasis, 2011, 17, 288-292.	0.7	6
69	Hydrogen Sulfide and I-Cysteine Increase Phosphatidylinositol 3,4,5-Trisphosphate (PIP3) and Glucose Utilization by Inhibiting Phosphatase and Tensin Homolog (PTEN) Protein and Activating Phosphoinositide 3-Kinase (PI3K)/Serine/Threonine Protein Kinase (AKT)/Protein Kinase Cζ/λ (PKCζ/λ) in 3T311 Adinocytes Journal of Biological Chemistry, 2011, 286, 39848-39859	1.6	92
70	Hyperketonemia increases monocyte adhesion to endothelial cells and is mediated by LFA-1 expression in monocytes and ICAM-1 expression in endothelial cells. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E298-E306.	1.8	33
71	Insulin Resistance and Glucose Metabolism in Childhood Obesity. , 2011, , 201-207.		0
72	Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCPâ€1, ICAMâ€1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFκB, Akt, and Glutâ€2 in livers of zucker diabetic fatty rats. Molecular Nutrition and Food Research, 2010, 54, 1371-1380.	1.5	73

#	Article	IF	CITATIONS
73	Low Levels of Hydrogen Sulfide in the Blood of Diabetes Patients and Streptozotocin-Treated Rats Causes Vascular Inflammation?. Antioxidants and Redox Signaling, 2010, 12, 1333-1337.	2.5	271
74	Metabolic Syndrome and Cancer. Metabolic Syndrome and Related Disorders, 2009, 7, 279-288.	0.5	145
75	l-Cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1, and oxidative stress and inhibits NF-κB activation in the livers of Zucker diabetic rats. Free Radical Biology and Medicine, 2009, 46, 1633-1638.	1.3	82
76	Curcumin Supplementation Lowers TNF-α, IL-6, IL-8, and MCP-1 Secretion in High Glucose-Treated Cultured Monocytes and Blood Levels of TNF-α, IL-6, MCP-1, Glucose, and Glycosylated Hemoglobin in Diabetic Rats. Antioxidants and Redox Signaling, 2009, 11, 241-249.	2.5	245
77	Chromium dinicocysteinate supplementation decreases blood glucose, glycosylated hemoglobin, CRP, MCPâ€1 and lipid peroxidation, and increases adiponectin and vitamin C levels in Zucker Type 2 diabetic fatty rats. FASEB Journal, 2009, 23, 990.30.	0.2	1
78	Lâ€Cysteine supplementation lowers blood glucose, CRP, MCPâ€1 and inhibits NFkB and Akt activation in liver of Zucker diabetic rats. FASEB Journal, 2009, 23, 345.2.	0.2	0
79	The effect of maternal and cord-blood vitamin C, vitamin E and lipid peroxide levels on newborn birth weight. Molecular and Cellular Biochemistry, 2008, 309, 217-221.	1.4	27
80	Aluminum Enhances Iron Uptake and Expression of Neurofibrillary Tangle Protein in Neuroblastoma Cells. Journal of Neurochemistry, 2008, 72, 2059-2064.	2.1	34
81	Can tryptophan oxidation lead to lower tryptophan level in diabetes? A commentary on "Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: Inhibition by pyridoxamine― Free Radical Biology and Medicine, 2008, 44, 1273-1275.	1.3	7
82	Relationship of elevated osteoprotegerin with insulin resistance, CRP, and TNF-α levels in men with type 2 diabetes. Cytokine, 2008, 44, 168-171.	1.4	54
83	Effect of Hyperketonemia (acetoacetate) on Apoptosis in Human U937 Monocytes. FASEB Journal, 2008, 22, 614.24.	0.2	0
84	High Glucose and Ketosis (Acetoacetate) Increases, and Chromium Niacinate Decreases, IL-6, IL-8, and MCP-1 Secretion and Oxidative Stress in U937 Monocytes. Antioxidants and Redox Signaling, 2007, 9, 1581-1590.	2.5	53
85	Thiazolidinedione Treatment Decreases Bone Mineral Density in Type 2 Diabetic Men. Diabetes Care, 2007, 30, 1574-1576.	4.3	147
86	Plasma and urine levels of resistin and adiponectin in chronic kidney disease. Cytokine, 2007, 37, 1-5.	1.4	50
87	Plasma Levels of Cell-Free Apoptotic DNA Ladders and Gamma-Glutamyltranspeptidase (GGT) in Diabetic Children. Experimental Biology and Medicine, 2007, 232, 1160-1169.	1.1	9
88	Vitamin B6 (pyridoxamine) supplementation and complications of diabetes. Metabolism: Clinical and Experimental, 2007, 56, 168-171.	1.5	22
89	Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-α, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free Radical Biology and Medicine, 2007, 43, 1124-1131.	1.3	138
90	Trivalent Chromium Supplementation Inhibits Oxidative Stress, Protein Glycosylation, and Vascular Inflammation in High Glucose-Exposed Human Erythrocytes and Monocytes. Oxidative Stress and Disease, 2007, , 301-313.	0.3	0

#	Article	IF	CITATIONS
91	Oxidative stress and metabolic diseases: Introduction. Pathophysiology, 2006, 13, 127-128.	1.0	6
92	Hyperketonemia (ketosis), oxidative stress and type 1 diabetes. Pathophysiology, 2006, 13, 163-170.	1.0	70
93	Resistin and adiponectin levels in subjects with coronary artery disease and type 2 diabetes. Cytokine, 2006, 34, 219-223.	1.4	72
94	Effect of curcumin on protein glycosylation, lipid peroxidation, and oxygen radical generation in human red blood cells exposed to high glucose levels. Free Radical Biology and Medicine, 2006, 41, 92-96.	1.3	92
95	Superoxide dismutase overexpression and cellular oxidative damage in diabetes. Free Radical Biology and Medicine, 2006, 41, 1187-1190.	1.3	25
96	Chromium Chloride Inhibits TNFα and IL-6 Secretion in Isolated Human Blood Mononuclear Cells Exposed to High Glucose. Hormone and Metabolic Research, 2006, 38, 60-62.	0.7	25
97	Trivalent Chromium Inhibits Protein Glycosylation and Lipid Peroxidation in High Glucose-Treated Erythrocytes. Antioxidants and Redox Signaling, 2006, 8, 238-241.	2.5	36
98	Effect of Niacinâ€Bound Chromium Complex (NBC) on ILâ€6 Secretion and Oxidative Stress Caused by Highâ€Glucose (HG) in Cultured U937 Monocytes FASEB Journal, 2006, 20, A559.	0.2	0
99	Advanced glycation end products and oxidative stress are increased in chronic allograft nephropathy. American Journal of Kidney Diseases, 2004, 43, 154-160.	2.1	43
100	Effect of vitamin B 6 on oxygen radicals, mitochondrial membrane potential, and lipid peroxidation in H 2 O 2 -treated U937 monocytes. Free Radical Biology and Medicine, 2004, 36, 423-428.	1.3	167
101	Protective effects of 17β-estradiol and trivalent chromium on interleukin-6 secretion, oxidative stress, and adhesion of monocytes: Relevance to heart disease in postmenopausal women. Free Radical Biology and Medicine, 2004, 37, 1730-1735.	1.3	31
102	Antioxidants prevent aluminum-induced toxicity in cultured hepatocytes. Journal of Inorganic Biochemistry, 2004, 98, 1129-1134.	1.5	19
103	Progesterone, but not 17β-estradiol, increases TNF-α secretion in U937 monocytes. Cytokine, 2004, 26, 102-105.	1.4	39
104	Oxygen radical generation and endosulfan toxicity in Jurkat T-cells. Molecular and Cellular Biochemistry, 2003, 247, 1-7.	1.4	19
105	Garlic attenuates hypercholesterolemic risk factors in olive oil fed rats and high cholesterol fed rats. Pathophysiology, 2003, 9, 127-132.	1.0	21
106	Elevated Blood Interleukin-6 Levels in Hyperketonemic Type 1 Diabetic Patients and Secretion by Acetoacetate-Treated Cultured U937 Monocytes. Diabetes Care, 2003, 26, 2139-2143.	4.3	95
107	Ketosis, Tumor Necrosis Factor-α and Cardiovascular Disease in Type-1 Diabetic Patients. Progress in Experimental Cardiology, 2003, , 455-463.	0.0	0
108	Hyperketonemia Increases Tumor Necrosis Factor-Â Secretion in Cultured U937 Monocytes and Type 1 Diabetic Patients and Is Apparently Mediated by Oxidative Stress and cAMP Deficiency. Diabetes, 2002, 51, 2287-2293.	0.3	101

#	Article	IF	CITATIONS
109	Effect of high-glucose levels on protein oxidation in cultured lens cells, and in crystalline and albumin solution and its inhibition by vitamin B6 and N-acetylcysteine: its possible relevance to cataract formation in diabetes. Free Radical Biology and Medicine, 2002, 33, 1615-1621.	1.3	48
110	Chromium Chloride Inhibits Oxidative Stress and TNF-α Secretion Caused by Exposure to High Glucose in Cultured U937 Monocytes. Biochemical and Biophysical Research Communications, 2001, 289, 687-691.	1.0	85
111	Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radical Biology and Medicine, 2001, 30, 232-237.	1.3	199
112	Ketosis and the Generation of Oxygen Radicals in Diabetes Mellitus. Advances in Experimental Medicine and Biology, 2001, 498, 221-227.	0.8	5
113	Lipoic acid decreases lipid peroxidation and protein glycosylation and increases (Na+ + K+)- and Ca++-ATPase activities in high glucose-treated human erythrocytes. Free Radical Biology and Medicine, 2000, 29, 1122-1128.	1.3	78
114	Evidence for the induction of apoptosis by endosulfan in a human T-cell leukemic line. Molecular and Cellular Biochemistry, 2000, 205, 53-66.	1.4	104
115	Oxidative stress and apoptosis. Pathophysiology, 2000, 7, 153-163.	1.0	984
116	Effect of LDL+VLDL oxidizability and hyperglycemia on blood cholesterol, phospholipid and triglyceride levels in Type-I diabetic patients. Atherosclerosis, 2000, 149, 69-73.	0.4	9
117	Effect of hyperketonemia on plasma lipid peroxidation levels in diabetic patients. Diabetes Care, 1999, 22, 1171-1175.	4.3	60
118	Photo-oxidative Stress Down-modulates the Activity of Nuclear Factor-κB via Involvement of Caspase-1, Leading to Apoptosis of Photoreceptor Cells. Journal of Biological Chemistry, 1999, 274, 3734-3743.	1.6	122
119	Protein and lipid oxidation of banked human erythrocytes:. Free Radical Biology and Medicine, 1999, 27, 1041-1049.	1.3	125
120	Effect of Hyperketonemia on Blood Monocytes in Type-I Diabetic Patients and Apoptosis in Cultured U937 Monocytes. Antioxidants and Redox Signaling, 1999, 1, 211-220.	2.5	21
121	Dietary supplementation with olive oil influences iron concentrations in rats. Nutrition Research, 1999, 19, 1665-1670.	1.3	4
122	Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type 1 diabetic patients. Diabetes, 1999, 48, 1850-1855.	0.3	116
123	Effect of vitamin E and N-acetylcysteine on phosphatidylserine externalization and induction of coagulation by high-glucose—treated human erythrocytes. Metabolism: Clinical and Experimental, 1999, 48, 957-959.	1.5	22
124	MOLECULAR MECHANISMS OF CELLULAR LIPID PEROXIDATION IN DIABETES. , 1999, , 69-73.		0
125	Hyperketonemia (Acetoacetate) Increases the Oxidizability of LDL + VLDL In Type-I Diabetic Patients. Free Radical Biology and Medicine, 1998, 24, 175-181.	1.3	34
126	Glutathione and Glucose-6-Phosphate Dehydrogenase Deficiency Can Increase Protein Glycosylation. Free Radical Biology and Medicine, 1998, 24, 197-201.	1.3	60

#	Article	IF	CITATIONS
127	Ketosis (acetoacetate) can generate oxygen radicals and cause increased lipid peroxidation and growth inhibition in human endothelial cells. Free Radical Biology and Medicine, 1998, 25, 1083-1088.	1.3	120
128	Propylene Glycol-Mediated Cell Injury in a Primary Culture of Human Proximal Tubule Cells. Toxicological Sciences, 1998, 46, 410-417.	1.4	29
129	Propylene glycol-mediated cell injury in a primary culture of human proximal tubule cells. Toxicological Sciences, 1998, 46, 410-7.	1.4	11
130	The Effect of Oxygen Radicals Metabolites and Vitamin E on Glycosylation of Proteins. Free Radical Biology and Medicine, 1997, 22, 593-596.	1.3	142
131	Effect of glucose-6-phosphate dehydrogenase deficiency on reduced and oxidized glutathione and lipid peroxide levels in the blood of African-Americans. Clinica Chimica Acta, 1996, 253, 181-183.	0.5	21
132	Vitamin E and vitamin E-quinone levels in red blood cells and plasma of newborn infants and their mothers Journal of the American College of Nutrition, 1996, 15, 44-48.	1.1	64
133	The effect of modest vitamin E supplementation on lipid peroxidation products and other cardiovascular risk factors in diabetic patients. Lipids, 1996, 31, S87-S90.	0.7	57
134	Effect of elevated glucose concentrations on cellular lipid peroxidation and growth of cultured human kidney proximal tubule cells. Molecular and Cellular Biochemistry, 1996, 162, 11-16.	1.4	15
135	Effect of modest vitamin E supplementation on blood glycated hemoglobin and triglyceride levels and red cell indices in type I diabetic patients Journal of the American College of Nutrition, 1996, 15, 458-461.	1.1	65
136	Lipofuscin Products, Lipid Peroxides and Aluminum Accumulation in Red Blood Cells of Hemodialyzed Patients. American Journal of Nephrology, 1995, 15, 306-311.	1.4	22
137	Relationship between elevated lipid peroxides, vitamin E deficiency and hypertension in preeclampsia. Molecular and Cellular Biochemistry, 1995, 151, 33-38.	1.4	71
138	Elevated lipid peroxidation and vitamin e-quinone levels in heart ventricles of streptozotocin-treated diabetic rats. Free Radical Biology and Medicine, 1995, 18, 337-341.	1.3	92
139	Myocardial Lipid Peroxidation and Diabetes. Developments in Cardiovascular Medicine, 1995, , 185-195.	0.1	0
140	Acute Toxicity of Propylene Glycol: An Assessment Using Cultured Proximal Tubule Cells of Human Origin. Toxicological Sciences, 1994, 23, 38-43.	1.4	2
141	Aluminum alters the compartmentalization of iron in Friend erythroleukemia cells. Kidney International, 1994, 45, 636-641.	2.6	16
142	Acute Toxicity of Propylene Glycol: An Assessment Using Cultured Proximal Tubule Cells of Human Origin. Fundamental and Applied Toxicology, 1994, 23, 38-43.	1.9	25
143	Vitamin E and the hypercoagulability of neonatal blood. Clinica Chimica Acta, 1994, 225, 97-103.	0.5	7
144	Effect of glycemic control, race (white versus black), and duration of diabetes on reduced glutathione content in erythrocytes of diabetic patients. Metabolism: Clinical and Experimental, 1994, 43, 306-309.	1.5	107

#	Article	IF	CITATIONS
145	The effect of glycemic control and duration of diabetes on cholesterol and phospholipid classes in erythrocytes of type I diabetes. Metabolism: Clinical and Experimental, 1992, 41, 285-289.	1.5	3
146	Plasma lecithin-cholesterol acyltransferase activity and cholesterol and phospholipid levels in premature newborn infants. Lipids and Lipid Metabolism, 1991, 1086, 225-229.	2.6	7
147	Reduced Vitamin E and Increased Lipofuscin Products in Erythrocytes of Diabetic Rats. Diabetes, 1991, 40, 1241-1244.	0.3	68
148	Low Plasma Prealbumln and Carotenoid Levels in Sickle Cell Disease Patients. American Journal of the Medical Sciences, 1990, 299, 13-15.	0.4	10
149	The effect of malonyldialdehyde on viscosity of normal and sickle red blood cells. Biochemical Medicine and Metabolic Biology, 1990, 44, 37-41.	0.7	22
150	Elevated lipid peroxidation levels in red blood cells of streptozotocin-treated diabetic rats. Metabolism: Clinical and Experimental, 1990, 39, 971-975.	1.5	134
151	The accumulation of malonyldialdehyde, an end product of membrane lipid peroxidation, can cause potassium leak in normal and sickle red blood cells. Biochemical Medicine and Metabolic Biology, 1989, 42, 60-65.	0.7	20
152	Vitamin E and Membrane Abnormalities in Red Cells of Sickle Cell Disease Patients and Newborn Infants. Annals of the New York Academy of Sciences, 1989, 570, 461-463.	1.8	1
153	Evidence for membrane lipid peroxidation during the in vivo aging of human erythrocytes. Biochimica Et Biophysica Acta - Biomembranes, 1988, 937, 205-210.	1.4	186
154	Vitamin C and Sickle Cell Disease. Annals of the New York Academy of Sciences, 1987, 498, 484-486.	1.8	0
155	Presence of phosphatidylserine in the outer membrane bilayer of newborn human erythrocytes. Biochemical and Biophysical Research Communications, 1986, 136, 914-920.	1.0	18
156	Membrane lipid peroxidation in erythrocytes of the newborn. Clinica Chimica Acta, 1986, 161, 301-306.	0.5	43
157	Prematurity and Lecithin-Cholesterol Acyltransferase Deficiency in Newborn Infants. Pediatric Research, 1985, 19, 58-60.	1.1	19
158	Reduced levels of plasma ascorbic acid (vitamin C) in sickle cell disease patients: its possible role in the oxidant damage to sickle cells in vivo. Clinica Chimica Acta, 1985, 149, 257-261.	0.5	32
159	India's bait. Nature, 1984, 307, 206-206.	13.7	0
160	The effect of malonyldialdehyde, a product of lipid peroxidation, on the deformability, dehydration and51Cr-survival of erythrocytes. British Journal of Haematology, 1983, 53, 247-255.	1.2	118
161	Red blood cell [14C]cholesterol exchange and plasma cholesterol esterifying activity of normal and sickle cell blood. Biochimica Et Biophysica Acta - Biomembranes, 1982, 688, 11-15.	1.4	23
162	INTRODUCTION: VITAMIN E AND BLOOD CELL FUNCTION. Annals of the New York Academy of Sciences, 1982, 393, 229-236.	1.8	5

#	Article	IF	CITATIONS
163	Reduced Plasma Cholesterol Esterifying Activity in Iron-Deficient Rats: Its Possible Role in the Lipemia of Iron Deficiency. Journal of Nutrition, 1982, 112, 1230-1232.	1.3	11
164	Calcium potentiates the peroxidation of erythrocyte membrane lipids. Biochimica Et Biophysica Acta - Biomembranes, 1981, 642, 46-54.	1.4	67
165	Membrane alterations in phenylhydrazine-induced reticulocytes. Archives of Biochemistry and Biophysics, 1980, 201, 683-687.	1.4	51
166	Polymerization of membrane components in aging red blood cells. Biochemical and Biophysical Research Communications, 1980, 92, 247-254.	1.0	173
167	Generation of superoxide radicals by hydrazine. Biochimica Et Biophysica Acta - General Subjects, 1979, 586, 128-136.	1.1	86