Jiyong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6976408/publications.pdf

Version: 2024-02-01

Ινονοίι

#	Article	IF	CITATIONS
1	A uniformly accurate exponential wave integrator Fourier pseudo-spectral method with structure-preservation for long-time dynamics of the Dirac equation with small potentials. Numerical Algorithms, 2023, 92, 1367-1401.	1.9	2
2	Error analysis of a time fourth-order exponential wave integrator Fourier pseudo-spectral method for the nonlinear Dirac equation. International Journal of Computer Mathematics, 2022, 99, 791-807.	1.8	9
3	Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation. Applied Numerical Mathematics, 2022, 172, 1-26.	2.1	12
4	A uniformly accurate exponential wave integrator Fourier pseudo-spectral method with energy-preservation for long-time dynamics of the nonlinear Klein-Gordon equation. Applied Numerical Mathematics, 2022, 178, 166-191.	2.1	9
5	Explicit pseudo two-step exponential Runge–Kutta methods for the numerical integration of first-order differential equations. Numerical Algorithms, 2021, 86, 1143-1163.	1.9	3
6	Modified multi-step Nyström methods for oscillatory general second-order initial value problems. International Journal of Computer Mathematics, 2021, 98, 223-237.	1.8	0
7	Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. Applied Numerical Mathematics, 2021, 162, 150-170.	2.1	15
8	Analysis of a conservative fourth-order compact finite difference scheme for the Klein–Gordon–Dirac equation. Computational and Applied Mathematics, 2021, 40, 1.	2.2	9
9	Convergence analysis of a symmetric exponential integrator Fourier pseudo-spectral scheme for the Klein–Gordon–Dirac equation. Mathematics and Computers in Simulation, 2021, 190, 691-713.	4.4	9
10	Energy-preserving continuous stage extended Runge-Kutta-Nyström methods for oscillatory Hamiltonian systems. Applied Numerical Mathematics, 2019, 145, 469-487.	2.1	20
11	The existence of explicit symplectic ARKN methods with several stages and algebraic order greater than two. Journal of Computational and Applied Mathematics, 2019, 353, 204-209.	2.0	6
12	Multi-step hybrid methods adapted to the numerical integration of oscillatory second-order systems. Journal of Applied Mathematics and Computing, 2019, 61, 155-184.	2.5	1
13	Energy-preserving trigonometrically fitted continuous stage Runge-Kutta-Nyström methods for oscillatory Hamiltonian systems. Numerical Algorithms, 2019, 81, 1379-1401.	1.9	11
14	Symplectic and symmetric trigonometrically-fitted ARKN methods. Applied Numerical Mathematics, 2019, 135, 381-395.	2.1	3
15	Multi-step Nyström methods for general second-order initial value problems <i>y</i> ″(<i>t</i>) = <i>f</i> (<i>t</i> , <i>y</i> (<i>t</i>), <i>y</i>), <i>y</i> ′(<i>t</i>)). International Journal of Computer Mathematics, 2019, 96, 1254-1277.	1.8	1
16	A class of linear multi-step method adapted to general oscillatory second-order initial value problems. Journal of Applied Mathematics and Computing, 2018, 56, 561-591.	2.5	3
17	Trigonometrically fitted multi-step hybrid methods for oscillatory special second-order initial value problems. International Journal of Computer Mathematics, 2018, 95, 979-997.	1.8	6
18	Extended explicit pseudo two-step RKN methods for oscillatory systems y ″ + M y = f(y). Numerical Algorithms, 2018, 78, 673-700.	1.9	10

Jiyong Li

#	Article	IF	CITATIONS
19	Trigonometrically fitted multi-step RKN methods for second-order oscillatory initial value problems. Applied Mathematics and Computation, 2018, 320, 740-753.	2.2	2
20	Symmetric trigonometrically-fitted two-step hybrid methods for oscillatory problems. Journal of Computational and Applied Mathematics, 2018, 344, 115-131.	2.0	6
21	Trigonometrically fitted multi-step Runge-Kutta methods for solving oscillatory initial value problems. Numerical Algorithms, 2017, 76, 237-258.	1.9	0
22	Multi-step Runge–Kutta–Nyström methods for special second-order initial value problems. Applied Numerical Mathematics, 2017, 113, 54-70.	2.1	5
23	A family of improved Falkner-type methods for oscillatory systems. Applied Mathematics and Computation, 2017, 293, 345-357.	2.2	5
24	Diagonal Implicit Symmetric ERKN Integrators for Solving Oscillatory Reversible Systems. International Journal of Applied and Computational Mathematics, 2017, 3, 1229-1247.	1.6	1
25	Multi-step hybrid methods for special second-order differential equations y ″(t) = f(t,y(t)). Numerical Algorithms, 2016, 73, 711-733.	1.9	9
26	Error analysis of explicit TSERKN methods for highly oscillatory systems. Numerical Algorithms, 2014, 65, 465-483.	1.9	13
27	Adapted Falkner-type methods solving oscillatory second-order differential equations. Numerical Algorithms, 2013, 62, 355-381.	1.9	24
28	Two-step extended RKN methods for oscillatory systems. Computer Physics Communications, 2011, 182, 2486-2507.	7.5	44
29	Note on derivation of order conditions for ARKN methods for perturbed oscillators. Computer Physics Communications, 2009, 180, 1545-1549.	7.5	86