
Robert King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6976049/publications.pdf Version: 2024-02-01

POREDT KING

#	Article	IF	CITATIONS
1	Observation impact statement on satellite sea surface salinity data from two operational global ocean forecasting systems. Journal of Operational Oceanography, 2022, 15, 87-103.	1.2	4
2	Towards a Multiâ€Platform Assimilative System for North Sea Biogeochemistry. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016649.	2.6	10
3	Altimetry for the future: Building on 25 years of progress. Advances in Space Research, 2021, 68, 319-363.	2.6	119
4	Assimilating realistically simulated wide-swath altimeter observations in a high-resolution shelf-seas forecasting system. Ocean Science, 2021, 17, 1791-1813.	3.4	1
5	The impact of Argo observations in a global weakly coupled ocean–atmosphere data assimilation and shortâ€range prediction system. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 401-414.	2.7	8
6	An Application of NEMOVAR for Regional Wave Model Data Assimilation. Frontiers in Marine Science, 2020, 7, .	2.5	7
7	Assessing the Potential Impact of Changes to the Argo and Moored Buoy Arrays in an Operational Ocean Analysis System. Frontiers in Marine Science, 2020, 7, .	2.5	2
8	Can wave coupling improve operational regional ocean forecasts for the north-west European Shelf?. Ocean Science, 2019, 15, 669-690.	3.4	33
9	The impact of a new high-resolution ocean model on the Met Office North-West European Shelf forecasting system. Ocean Science, 2019, 15, 1133-1158.	3.4	58
10	Model-Observations Synergy in the Coastal Ocean. Frontiers in Marine Science, 2019, 6, .	2.5	34
11	From Observation to Information and Users: The Copernicus Marine Service Perspective. Frontiers in Marine Science, 2019, 6, .	2.5	135
12	Assimilating satellite seaâ€surface salinity data from SMOS, Aquarius and SMAP into a global ocean forecasting system. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 705-726.	2.7	19
13	Requirements for an Integrated in situ Atlantic Ocean Observing System From Coordinated Observing System Simulation Experiments. Frontiers in Marine Science, 2019, 6, .	2.5	21
14	Improving the initialisation of the Met Office operational shelf-seas model. Ocean Modelling, 2018, 130, 1-14.	2.4	25
15	The CO5 configuration of the 7†km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution. Geoscientific Model Development, 2017, 10, 2947-2969.	3.6	62
16	RAPID CIRCUMSTELLAR DISK EVOLUTION AND AN ACCELERATING STAR FORMATION RATE IN THE INFRARED DARK CLOUD M17 SWex. Astrophysical Journal, 2016, 825, 125.	4.5	34
17	Assessing a New Coupled Data Assimilation System Based on the Met Office Coupled Atmosphere–Land–Ocean–Sea Ice Model. Monthly Weather Review, 2015, 143, 4678-4694.	1.4	89
18	THE SPATIAL STRUCTURE OF YOUNG STELLAR CLUSTERS. I. SUBCLUSTERS. Astrophysical Journal, 2014, 787, 107.	4.5	114

ROBERT KING

#	Article	IF	CITATIONS
19	THE MYStIX INFRARED-EXCESS SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2013, 209, 31.	7.7	68
20	IDENTIFYING YOUNG STARS IN MASSIVE STAR-FORMING REGIONS FOR THE MYStIX PROJECT. Astrophysical Journal, Supplement Series, 2013, 209, 32.	7.7	71
21	OVERVIEW OF THE MASSIVE YOUNG STAR-FORMING COMPLEX STUDY IN INFRARED AND X-RAY (MYStIX) PROJECT. Astrophysical Journal, Supplement Series, 2013, 209, 26.	7.7	104
22	Testing the universality of star formation – II. Comparing separation distributions of nearby star-forming regions and the field. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2636-2646.	4.4	49
23	Star formation and disk properties in Pismis 24. Astronomy and Astrophysics, 2012, 539, A119.	5.1	68
24	Testing the universality of star formation - I. Multiplicity in nearby star-forming regions. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2025-2042.	4.4	66
25	Spectroscopy across the brown dwarf/planetary mass boundary. Astronomy and Astrophysics, 2012, 540, A85.	5.1	43
26	Spatially resolved submillimeter imaging of the HR 8799 debris disk. Astronomy and Astrophysics, 2011, 531, L17.	5.1	23
27	Detection of a large massive circumstellar disk around a high-mass young stellar object in the Carina Nebula. Astronomy and Astrophysics, 2011, 530, A40.	5.1	17
28	Deep wide-field near-infrared survey of the Carina Nebula. Astronomy and Astrophysics, 2011, 530, A34.	5.1	52
29	X-RAY STAR CLUSTERS IN THE CARINA COMPLEX. Astrophysical Journal, Supplement Series, 2011, 194, 9.	7.7	73
30	A CATALOG OF <i>CHANDRA</i> X-RAY SOURCES IN THE CARINA NEBULA. Astrophysical Journal, Supplement Series, 2011, 194, 2.	7.7	77
31	THE <i>CHANDRA</i> CARINA COMPLEX PROJECT VIEW OF TRUMPLER 16. Astrophysical Journal, Supplement Series, 2011, 194, 12.	7.7	42
32	A CHANDRA ACIS STUDY OF THE YOUNG STAR CLUSTER TRUMPLER 15 IN CARINA AND CORRELATION WITH NEAR-INFRARED SOURCES. Astrophysical Journal, Supplement Series, 2011, 194, 11.	7.7	43
33	AN INTRODUCTION TO THE <i>CHANDRA</i> CARINA COMPLEX PROJECT. Astrophysical Journal, Supplement Series, 2011, 194, 1.	7.7	117
34	NEAR-INFRARED PROPERTIES OF THE X-RAY-EMITTING YOUNG STELLAR OBJECTS IN THE CARINA NEBULA. Astrophysical Journal, Supplement Series, 2011, 194, 10.	7.7	60
35	\$mathsf{varepsilon}\$ Indi Ba, Bb: a detailed study of the nearest known brown dwarfs. Astronomy and Astrophysics, 2010, 510, A99.	5.1	72
36	The highest resolution near infrared spectrum of the imaged planetary mass companion 2M1207 b. Astronomy and Astrophysics, 2010, 517, A76.	5.1	80

#	Article	IF	CITATIONS
37	Dynamical masses for the nearest brown dwarf binary: Î μ Indi Ba, Bb. , 2009, , .		5
38	Ĵμ Indi Ba, Bb: a spectroscopic study of the nearest known brown dwarfs. , 2009, , .		0
39	The UKIDSS-2MASS proper motion survey - I. Ultracool dwarfs from UKIDSS DR4. Monthly Notices of the Royal Astronomical Society, 2009, 394, 857-871.	4.4	31