Stan J J Brouns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6976000/publications.pdf Version: 2024-02-01

		57631	45213
95	16,580	44	90
papers	citations	h-index	g-index
112	112	112	11643
all docs	docs citations	times ranked	citing authors

STAN LI BROUNS

#	Article	IF	CITATIONS
1	Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiology Reviews, 2022, 46, .	3.9	92
2	Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA. Cell, 2022, 185, 1471-1486.e19.	13.5	85
3	Single cell variability of CRISPRâ€Cas interference and adaptation. Molecular Systems Biology, 2022, 18, e10680.	3.2	3
4	Structural basis for broad anti-phage immunity by DISARM. Nature Communications, 2022, 13, .	5.8	10
5	Iron can be microbially extracted from Lunar and Martian regolith simulants and 3D printed into tough structural materials. PLoS ONE, 2021, 16, e0249962.	1.1	12
6	SCOPE enables type III CRISPR-Cas diagnostics using flexible targeting and stringent CARF ribonuclease activation. Nature Communications, 2021, 12, 5033.	5.8	57
7	Cas4–Cas1 Is a Protospacer Adjacent Motif–Processing Factor Mediating Half-Site Spacer Integration During CRISPR Adaptation. CRISPR Journal, 2021, 4, 536-548.	1.4	9
8	PAM-repeat associations and spacer selection preferences in single and co-occurring CRISPR-Cas systems. Genome Biology, 2021, 22, 281.	3.8	26
9	The gRAMP CRISPR-Cas effector is an RNA endonuclease complexed with a caspase-like peptidase. Science, 2021, 373, 1349-1353.	6.0	76
10	Mechanism for Cas4-assisted directional spacer acquisition in CRISPR–Cas. Nature, 2021, 598, 515-520.	13.7	29
11	RNA Small RNAs in Bacteria. , 2021, , 580-586.		Ο
12	Direct Visualization of Native CRISPR Target Search in Live Bacteria Reveals Cascade DNA Surveillance Mechanism. Molecular Cell, 2020, 77, 39-50.e10.	4.5	43
13	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18, 67-83.	13.6	1,427
14	Extracting Transition Rates in Particle Tracking Using Analytical Diffusion Distribution Analysis. Biophysical Journal, 2020, 119, 1970-1983.	0.2	19
15	Adsorption Sequencing as a Rapid Method to Link Environmental Bacteriophages to Hosts. IScience, 2020, 23, 101439.	1.9	23
16	Prophages are associated with extensive CRISPR–Cas auto-immunity. Nucleic Acids Research, 2020, 48, 12074-12084.	6.5	35
17	Development of Styrene Maleic Acid Lipid Particles as a Tool for Studies of Phage-Host Interactions. Journal of Virology, 2020, 94, .	1.5	3
18	An educational guide for nanopore sequencing in the classroom. PLoS Computational Biology, 2020, 16, e1007314.	1.5	20

#	Article	IF	CITATIONS
19	Selective loading and processing of prespacers for precise CRISPR adaptation. Nature, 2020, 579, 141-145.	13.7	46
20	Visualisation of dCas9 target search in vivo using an open-microscopy framework. Nature Communications, 2019, 10, 3552.	5.8	70
21	Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nature Microbiology, 2019, 4, 1727-1736.	5.9	184
22	Creation of Conductive Graphene Materials by Bacterial Reduction Using <i>Shewanella Oneidensis</i> . ChemistryOpen, 2019, 8, 888-895.	0.9	20
23	Conserved motifs in the CRISPR leader sequence control spacer acquisition levels in Type I-D CRISPR-Cas systems. FEMS Microbiology Letters, 2019, 366, .	0.7	16
24	Addiction systems antagonize bacterial adaptive immunity. FEMS Microbiology Letters, 2019, 366, .	0.7	5
25	Systematic analysis of Type lâ€E <i>Escherichia coli</i> CRISPRâ€Cas PAM sequences ability to promote interference and primed adaptation. Molecular Microbiology, 2019, 111, 1558-1570.	1.2	27
26	Cas4–Cas1 fusions drive efficient PAM selection and control CRISPR adaptation. Nucleic Acids Research, 2019, 47, 5223-5230.	6.5	34
27	Using CAPTURE to detect spacer acquisition in native CRISPR arrays. Nature Protocols, 2019, 14, 976-990.	5.5	14
28	CRISPR-Cas Systems Reduced to a Minimum. Molecular Cell, 2019, 73, 641-642.	4.5	0
29	Harnessing type I CRISPR–Cas systems for genome engineering in human cells. Nature Biotechnology, 2019, 37, 1471-1477.	9.4	91
30	Evolution of BACON Domain Tandem Repeats in crAssphage and Novel Gut Bacteriophage Lineages. Viruses, 2019, 11, 1085.	1.5	20
31	Molecular and Evolutionary Determinants of Bacteriophage Host Range. Trends in Microbiology, 2019, 27, 51-63.	3.5	277
32	Complete Genome Sequence of the <i>Escherichia coli</i> Phage Ayreon. Genome Announcements, 2018, 6, .	0.8	1
33	Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR–Cas effector complexes. Nucleic Acids Research, 2018, 46, 873-885.	6.5	57
34	Repetitive DNA Reeling by the Cascade-Cas3 Complex in Nucleotide Unwinding Steps. Molecular Cell, 2018, 70, 385-394.e3.	4.5	54
35	Cas4 Facilitates PAM-Compatible Spacer Selection during CRISPR Adaptation. Cell Reports, 2018, 22, 3377-3384.	2.9	102
36	Complete Genome Sequences of Two T4-Like Escherichia coli Bacteriophages. Genome Announcements, 2018, 6, .	0.8	1

#	Article	IF	CITATIONS
37	Targeting mechanisms of tailed bacteriophages. Nature Reviews Microbiology, 2018, 16, 760-773.	13.6	310
38	Role of nucleotide identity in effective CRISPR target escape mutations. Nucleic Acids Research, 2018, 46, 10395-10404.	6.5	10
39	CRISPR-Cas: Adapting to change. Science, 2017, 356, .	6.0	323
40	Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation. Molecular Cell, 2016, 63, 852-864.	4.5	111
41	Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR–Cas system. Nature Communications, 2016, 7, 12853.	5.8	125
42	CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Research, 2015, 43, 10831-10847.	6.5	95
43	CRISPR sabotage. Genome Biology, 2015, 16, 248.	3.8	3
44	Two Distinct DNA Binding Modes Guide Dual Roles of a CRISPR-Cas Protein Complex. Molecular Cell, 2015, 58, 60-70.	4.5	100
45	An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 2015, 13, 722-736.	13.6	2,081
46	Electrophoretic Mobility Shift Assay of DNA and CRISPR-Cas Ribonucleoprotein Complexes. Methods in Molecular Biology, 2015, 1311, 171-184.	0.4	4
47	Archaeal MBF1 binds to 30S and 70S ribosomes via its helix–turn–helix domain. Biochemical Journal, 2014, 462, 373-384.	1.7	16
48	DNA-guided DNA interference by a prokaryotic Argonaute. Nature, 2014, 507, 258-261.	13.7	373
49	Planting the seed: target recognition of short guide RNAs. Trends in Microbiology, 2014, 22, 74-83.	3.5	70
50	Crystal structure of the CRISPR RNA–guided surveillance complex from <i>Escherichia coli</i> . Science, 2014, 345, 1473-1479.	6.0	226
51	Degenerate target sites mediate rapid primed CRISPR adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1629-38.	3.3	239
52	Differential Translation Tunes Uneven Production of Operon-Encoded Proteins. Cell Reports, 2013, 4, 938-944.	2.9	64
53	Distribution and Mechanism of the Type I CRISPR-Cas Systems. , 2013, , 145-169.		5
54	CRISPR-Cas systems preferentially target the leading regions of MOB _F conjugative plasmids. RNA Biology, 2013, 10, 749-761.	1.5	32

#	Article	IF	CITATIONS
55	Comparative Genomic and Functional Analysis of 100 Lactobacillus rhamnosus Strains and Their Comparison with Strain GG. PLoS Genetics, 2013, 9, e1003683.	1.5	180
56	Type I-E CRISPR-Cas Systems Discriminate Target from Non-Target DNA through Base Pairing-Independent PAM Recognition. PLoS Genetics, 2013, 9, e1003742.	1.5	187
57	A capture approach for supercoiled plasmid DNA using a triplex-forming oligonucleotide. Nucleic Acids Research, 2013, 41, e111-e111.	6.5	1
58	CRISPRTarget. RNA Biology, 2013, 10, 817-827.	1.5	272
59	Distribution and Mechanism of the Type I CRISPR-Cas Systems. , 2013, , 145-169.		7
60	Native Tandem and Ion Mobility Mass Spectrometry Highlight Structural and Modular Similarities in Clustered-Regularly-Interspaced Shot-Palindromic-Repeats (CRISPR)-associated Protein Complexes From Escherichia coli and Pseudomonas aeruginosa. Molecular and Cellular Proteomics, 2012, 11, 1430-1441.	2.5	74
61	A Swiss Army Knife of Immunity. Science, 2012, 337, 808-809.	6.0	8
62	Cascade-mediated binding and bending of negatively supercoiled DNA. RNA Biology, 2012, 9, 1134-1138.	1.5	37
63	CRISPR Immunity Relies on the Consecutive Binding and Degradation of Negatively Supercoiled Invader DNA by Cascade and Cas3. Molecular Cell, 2012, 46, 595-605.	4.5	475
64	The CRISPRs, They Are A-Changin': How Prokaryotes Generate Adaptive Immunity. Annual Review of Genetics, 2012, 46, 311-339.	3.2	260
65	RNA in Defense: CRISPRs Protect Prokaryotes against Mobile Genetic Elements. Cold Spring Harbor Perspectives in Biology, 2012, 4, a003657-a003657.	2.3	76
66	The rise and fall of CRISPRs – dynamics of spacer acquisition and loss. Molecular Microbiology, 2012, 85, 1021-1025.	1.2	26
67	CRISPR Interference Directs Strand Specific Spacer Acquisition. PLoS ONE, 2012, 7, e35888.	1.1	335
68	Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biological Chemistry, 2011, 392, 277-89.	1.2	145
69	Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature, 2011, 477, 486-489.	13.7	355
70	Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 2011, 9, 467-477.	13.6	2,078
71	Assembling the archaeal ribosome: roles for translation-factor-related GTPases. Biochemical Society Transactions, 2011, 39, 45-50.	1.6	16
72	Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nature Structural and Molecular Biology, 2011, 18, 529-536.	3.6	498

#	Article	IF	CITATIONS
73	Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10098-10103.	3.3	665
74	Structure of the ribosome associating GTPase HflX. Proteins: Structure, Function and Bioinformatics, 2010, 78, 705-713.	1.5	19
75	Hâ€NSâ€mediated repression of CRISPRâ€based immunity in <i>Escherichia coli</i> K12 can be relieved by the transcription activator LeuO. Molecular Microbiology, 2010, 77, 1380-1393.	1.2	220
76	Fidelity in Archaeal Information Processing. Archaea, 2010, 2010, 1-15.	2.3	4
77	CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences, 2009, 34, 401-407.	3.7	453
78	RNAi: Prokaryotes Get in on the Act. Cell, 2009, 139, 863-865.	13.5	22
79	Role of multiprotein bridging factor 1 in archaea: bridging the domains?. Biochemical Society Transactions, 2009, 37, 52-57.	1.6	21
80	Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures. Extremophiles, 2008, 12, 587-594.	0.9	37
81	Structural Insight into Substrate Binding and Catalysis of a Novel 2-Keto-3-deoxy-d-arabinonate Dehydratase Illustrates Common Mechanistic Features of the FAH Superfamily. Journal of Molecular Biology, 2008, 379, 357-371.	2.0	34
82	Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science, 2008, 321, 960-964.	6.0	2,138
83	Transcriptome Analysis of Infection of the Archaeon <i>Sulfolobus solfataricus</i> with <i>Sulfolobus</i> Turreted Icosahedral Virus. Journal of Virology, 2008, 82, 4874-4883.	1.5	84
84	Crystal Structure and Biochemical Properties of the d-Arabinose Dehydrogenase from Sulfolobus solfataricus. Journal of Molecular Biology, 2007, 371, 1249-1260.	2.0	16
85	Purification, crystallization and preliminary crystallographic analysis of a GTP-binding protein from the hyperthermophilic archaeonSulfolobus solfataricus. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 239-241.	0.7	3
86	Improving the Performance of a Quadrupole Time-of-Flight Instrument for Macromolecular Mass Spectrometry. Analytical Chemistry, 2006, 78, 7473-7483.	3.2	240
87	Identification of a Novel α-Galactosidase from the Hyperthermophilic Archaeon Sulfolobus solfataricus. Journal of Bacteriology, 2006, 188, 2392-2399.	1.0	51
88	Identification of the Missing Links in Prokaryotic Pentose Oxidation Pathways. Journal of Biological Chemistry, 2006, 281, 27378-27388.	1.6	102
89	Evidence Supporting a cis-enediol-based Mechanism for Pyrococcus furiosus Phosphoglucose Isomerase. Journal of Molecular Biology, 2006, 358, 1353-1366.	2.0	29
90	9 Functional Genomics of the Thermo-Acidophilic Archaeon Sulfolobus solfataricus. Methods in Microbiology, 2006, 35, 201-231.	0.4	0

#	Article	IF	CITATIONS
91	Reconstruction of central carbon metabolism inSulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics, 2006, 6, 1518-1529.	1.3	52
92	Engineering a Selectable Marker for Hyperthermophiles. Journal of Biological Chemistry, 2005, 280, 11422-11431.	1.6	78
93	Cloning and Expression of Islandisin, a New Thermostable Subtilisin from Fervidobacterium islandicum , in Escherichia coli. Applied and Environmental Microbiology, 2005, 71, 3951-3958.	1.4	28
94	DNA family shuffling of hyperthermostable β-glycosidases. Biochemical Journal, 2002, 368, 461-470.	1.7	38
95	Adaptation by Type V-A and V-B CRISPR-Cas Systems Demonstrates Conserved Protospacer Selection Mechanisms Between Diverse CRISPR-Cas Types. CRISPR Journal, 0, , .	1.4	1