Dindial Ramotar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6975786/publications.pdf

Version: 2024-02-01

52 1,519 24 38 papers citations h-index g-index

52 52 52 1797 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Screening Method to Identify Essential Yeast Genes for Responses Towards Spermine. Methods in Molecular Biology, 2022, 2377, 363-369.	0.9	O
2	A simple protocol to isolate a single human cell PRDX1 knockout generated by CRISPR-Cas9 system. STAR Protocols, 2022, 3, 101216.	1.2	2
3	The histone H2B Arg95 residue links the pheromone response pathway to rapamycin-induced G1 arrest in yeast. Scientific Reports, 2022, 12, .	3 . 3	3
4	C. elegans ribosomal protein S3 protects against H2O2-induced DNA damage and suppresses spontaneous mutations in yeast. DNA Repair, 2022, 117, 103359.	2.8	1
5	Dead Cas9–sgRNA Complex Shelters Vulnerable DNA Restriction Enzyme Sites from Cleavage for Cloning Applications. CRISPR Journal, 2021, 4, 275-289.	2.9	7
6	The base excision repair process: comparison between higher and lower eukaryotes. Cellular and Molecular Life Sciences, 2021, 78, 7943-7965.	5 . 4	19
7	CRISPR Fokl Dead Cas9 System: Principles and Applications in Genome Engineering. Cells, 2020, 9, 2518.	4.1	21
8	The Base Excision Repair Pathway in the Nematode Caenorhabditis elegans. Frontiers in Cell and Developmental Biology, 2020, 8, 598860.	3.7	14
9	The status surrounding chloroquine and other drugs as potential anti-infective agents for COVID-19. Expert Review of Respiratory Medicine, 2020, 14, 863-864.	2.5	1
10	The human organic cation transporter OCT1 and its role as a target for drug responses. Drug Metabolism Reviews, 2019, 51, 389-407.	3 . 6	18
11	Yeast Lacking the PP2A Phosphatase Regulatory Subunit Rts1 Sensitizes rad51 Mutants to Specific DNA Damaging Agents. Frontiers in Genetics, 2019, 10, 1117.	2.3	3
12	CUX1 stimulates APE1 enzymatic activity and increases the resistance of glioblastoma cells to the mono-alkylating agent temozolomide. Neuro-Oncology, 2018, 20, 484-493.	1.2	32
13	Uncharacterized ORF HUR1 influences the efficiency of non-homologous end-joining repair in Saccharomyces cerevisiae. Gene, 2018, 639, 128-136.	2.2	19
14	UNG-1 and APN-1 are the major enzymes to efficiently repair 5-hydroxymethyluracil DNA lesions in C. elegans. Scientific Reports, 2018, 8, 6860.	3.3	14
15	Identification of essential yeast genes involved in polyamine resistance. Gene, 2018, 677, 361-369.	2.2	4
16	Structural modeling of human organic cation transporters. Computational Biology and Chemistry, 2017, 68, 153-163.	2.3	44
17	Imaging the Pharynx to Measure the Uptake of Doxorubicin in Caenorhabditis elegans. Bio-protocol, 2017, 7, e2291.	0.4	0
18	Uptake Assays to Monitor Anthracyclines Entry into Mammalian Cells. Bio-protocol, 2017, 7, e2555.	0.4	1

#	Article	IF	CITATIONS
19	The human organic cation transporter OCT1 mediates high affinity uptake of the anticancer drug daunorubicin. Scientific Reports, 2016, 6, 20508.	3.3	40
20	Peroxiredoxin 1 interacts with and blocks the redox factor APE1 from activating interleukin-8 expression. Scientific Reports, 2016, 6, 29389.	3.3	40
21	Insights into a novel nuclear function for Fascin in the regulation of the amino-acid transporter SLC3A2. Scientific Reports, 2016, 6, 36699.	3.3	22
22	A novel approach using C. elegans DNA damage-induced apoptosis to characterize the dynamics of uptake transporters for therapeutic drug discoveries. Scientific Reports, 2016, 6, 36026.	3.3	20
23	Complementation of the Yeast Model System Reveals that Caenorhabditis elegans OCT-1 Is a Functional Transporter of Anthracyclines. PLoS ONE, 2015, 10, e0133182.	2.5	12
24	The long N-terminus of the C. elegans DNA repair enzyme APN-1 targets the protein to the nucleus of a heterologous system. Gene, 2014, 553, 151-157.	2.2	2
25	Functional variants of human APE1 rescue the DNA repair defects of the yeast AP endonuclease/3′-diesterase-deficient strain. DNA Repair, 2014, 22, 53-66.	2.8	5
26	Agp2, a Member of the Yeast Amino Acid Permease Family, Positively Regulates Polyamine Transport at the Transcriptional Level. PLoS ONE, 2013, 8, e65717.	2.5	29
27	Functional characterization of the Caenorhabditis elegans DNA repair enzyme APN-1. DNA Repair, 2012, 11, 811-822.	2.8	17
28	The Peptidyl Prolyl Isomerase Rrd1 Regulates the Elongation of RNA Polymerase II during Transcriptional Stresses. PLoS ONE, 2011, 6, e23159.	2.5	20
29	The endonuclease IV family of apurinic/apyrimidinic endonucleases. Mutation Research - Reviews in Mutation Research, 2010, 705, 217-227.	5.5	47
30	Caenorhabditis elegans APN-1 plays a vital role in maintaining genome stability. DNA Repair, 2010, 9, 169-176.	2.8	23
31	Genetic interactions between HNT3/Aprataxin and RAD27/FEN1 suggest parallel pathways for 5′ end processing during base excision repair. DNA Repair, 2010, 9, 690-699.	2.8	23
32	Internalization of a thiazole-modified peptide in Sinorhizobium meliloti occurs by BacA-dependent and -independent mechanisms. Microbiology (United Kingdom), 2010, 156, 2702-2713.	1.8	31
33	The Human Carnitine Transporter SLC22A16 Mediates High Affinity Uptake of the Anticancer Polyamine Analogue Bleomycin-A5. Journal of Biological Chemistry, 2010, 285, 6275-6284.	3.4	89
34	Human Glyceraldehyde-3-phosphate Dehydrogenase Plays a Direct Role in Reactivating Oxidized Forms of the DNA Repair Enzyme APE1. Journal of Biological Chemistry, 2008, 283, 30632-30641.	3.4	122
35	Saccharomyces cerevisiae Ogg1 prevents poly(GT) tract instability in the mitochondrial genome. DNA Repair, 2006, 5, 235-242.	2.8	11
36	The 3′→5′ Exonuclease of Apn1 Provides an Alternative Pathway To Repair 7,8-Dihydro-8-Oxodeoxyguanosine in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2005, 25, 6380-6390.	2.3	70

#	Article	IF	CITATIONS
37	AGP2 Encodes the Major Permease for High Affinity Polyamine Import in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 24267-24276.	3.4	71
38	Characterization of Caenorhabditis elegans Exonuclease-3 and Evidence That a Mg2+-Dependent Variant Exhibits a Distinct Mode of Action on Damaged DNA. Biochemistry, 2005, 44, 12835-12848.	2.5	24
39	Identification of two apurinic/apyrimidinic endonucleases from Caenorhabditis elegans by cross-species complementation. DNA Repair, 2005, 4, 655-670.	2.8	25
40	A Genome-Wide Screen in Saccharomyces cerevisiae Reveals Altered Transport As a Mechanism of Resistance to the Anticancer Drug Bleomycin. Cancer Research, 2004, 64, 1102-1109.	0.9	108
41	Characterization of a transport and detoxification pathway for the antitumour drug bleomycin in Saccharomyces cerevisiae. Biochemical Journal, 2004, 384, 47-58.	3.7	27
42	α-Anomeric Deoxynucleotides, Anoxic Products of Ionizing Radiation, Are Substrates for the Endonuclease IV-Type AP Endonucleasesâ€. Biochemistry, 2004, 43, 15210-15216.	2.5	55
43	Protective mechanisms against the antitumor agent bleomycin: lessons from Saccharomyces cerevisiae. Current Genetics, 2003, 43, 213-224.	1.7	58
44	Characterization of Two Independent Amino Acid Substitutions that Disrupt the DNA Repair Functions of the Yeast Apn1â€. Biochemistry, 2003, 42, 6436-6445.	2.5	24
45	The Role of Yeast DNA 3′-Phosphatase Tpp1 and Rad1/Rad10 Endonuclease in Processing Spontaneous and Induced Base Lesions. Journal of Biological Chemistry, 2003, 278, 31434-31443.	3.4	38
46	Embryonic extracts derived from the nematode Caenorhabditis elegans remove uracil from DNA by the sequential action of uracil-DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease. Biochemical Journal, 2002, 365, 547-553.	3.7	31
47	Pir1p Mediates Translocation of the Yeast Apn1p Endonuclease into the Mitochondria To Maintain Genomic Stability. Molecular and Cellular Biology, 2001, 21, 1647-1655.	2.3	91
48	The Transcriptional Activator Imp2p Maintains Ion Homeostasis in Saccharomyces cerevisiae. Genetics, 1998, 149, 893-901.	2.9	15
49	The apurinic–apyrimidinic endonuclease IV family of DNA repair enzymes. Biochemistry and Cell Biology, 1997, 75, 327-336.	2.0	49
50	Normal processing of AP sites in Apn1â€deficient Saccharomyces cerevisiae is restored by Escherichia coli genes expressing either exonuclease III or endonuclease III. Molecular Microbiology, 1997, 24, 711-721.	2.5	30
51	The Caenorhabditis elegans gene CeAPN1 encodes a homolog of Escherichia coli and yeast apurinic/apyrimidinic endonuclease. Gene, 1996, 179, 291-293.	2.2	27
52	Functional Expression of Escherichia coli Endonuclease IV in Apurinic Endonuclease-deficient Yeast. Journal of Biological Chemistry, 1996, 271, 7368-7374.	3.4	20