Graham L Collingridge

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6975694/graham-l-collingridge-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

204 319 43,294 95 h-index g-index citations papers 46,448 352 9.3 7.32 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
319	GSK-3l egulates the synaptic expression of NMDA receptors via phosphorylation of phosphatidylinositol 4 kinase type II <i>European Journal of Neuroscience</i> , 2021 , 54, 6815-6825	3.5	3
318	The GSK-3 Inhibitor CT99021 Enhances the Acquisition of Spatial Learning and the Accuracy of Spatial Memory <i>Frontiers in Molecular Neuroscience</i> , 2021 , 14, 804130	6.1	0
317	Synthesis and pharmacological characterisation of arctigenin analogues as antagonists of AMPA and kainate receptors. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 9154-9162	3.9	O
316	Multiple roles of GluN2D-containing NMDA receptors in short-term potentiation and long-term potentiation in mouse hippocampal slices. <i>Neuropharmacology</i> , 2021 , 201, 108833	5.5	3
315	Further evidence that CP-AMPARs are critically involved in synaptic tag and capture at hippocampal CA1 synapses. <i>Molecular Brain</i> , 2021 , 14, 26	4.5	O
314	A tribute to Chris Parsons. <i>Neuropharmacology</i> , 2021 , 195, 108633	5.5	1
313	PKA drives an increase in AMPA receptor unitary conductance during LTP in the hippocampus. <i>Nature Communications</i> , 2021 , 12, 413	17.4	8
312	Optogenetic Manipulation of Postsynaptic cAMP Using a Novel Transgenic Mouse Line Enables Synaptic Plasticity and Enhances Depolarization Following Tetanic Stimulation in the Hippocampal Dentate Gyrus. <i>Frontiers in Neural Circuits</i> , 2020 , 14, 24	3.5	3
311	Autism-Misregulated eIF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions. <i>Molecular Cell</i> , 2020 , 77, 1176-1192.e16	17.6	32
310	Structural basis of subtype-selective competitive antagonism for GluN2C/2D-containing NMDA receptors. <i>Nature Communications</i> , 2020 , 11, 423	17.4	10
309	Illuminating Relationships Between the Pre- and Post-synapse. Frontiers in Neural Circuits, 2020, 14, 9	3.5	2
308	Mice lacking neuronal calcium sensor-1 show social and cognitive deficits. <i>Behavioural Brain Research</i> , 2020 , 381, 112420	3.4	4
307	(2,6)- and (2,6)-hydroxynorketamine inhibit the induction of NMDA receptor-dependent LTP at hippocampal CA1 synapses in mice. <i>Brain and Neuroscience Advances</i> , 2020 , 4, 2398212820957847	4	3
306	On the Role of Calcium-Permeable AMPARs in Long-Term Potentiation and Synaptic Tagging in the Rodent Hippocampus. <i>Frontiers in Synaptic Neuroscience</i> , 2019 , 11, 4	3.5	12
305	Differential sensitivity of three forms of hippocampal synaptic potentiation to depotentiation. <i>Molecular Brain</i> , 2019 , 12, 30	4.5	5
304	The Hippocampus Is the Place to Be: Opioid Receptors and LTP. <i>Cell Reports</i> , 2019 , 28, 1117-1118	10.6	1
303	Investigation of the structural requirements for N-methyl-D-aspartate receptor positive and negative allosteric modulators based on 2-naphthoic acid. <i>European Journal of Medicinal Chemistry</i> , 2019 , 164, 471-498	6.8	8

(2017-2018)

Rapid Turnover of Cortical NCAM1 Regulates Synaptic Reorganization after Peripheral Nerve Injury. <i>Cell Reports</i> , 2018 , 22, 748-759	10.6	25
NMDAR-dependent Argonaute 2 phosphorylation regulates miRNA activity and dendritic spine plasticity. <i>EMBO Journal</i> , 2018 , 37,	13	23
Long-term potentiation in the hippocampus: discovery, mechanisms and function. <i>Neuroforum</i> , 2018 , 24, A103-A120	0.7	40
Some distorted thoughts about ketamine as a psychedelic and a novel hypothesis based on NMDA receptor-mediated synaptic plasticity. <i>Neuropharmacology</i> , 2018 , 142, 30-40	5.5	20
The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning. <i>Nature Neuroscience</i> , 2018 , 21, 50-62	25.5	71
Corrigendum to: Long-term potentiation in the hippocampus: discovery, mechanisms and function. <i>Neuroforum</i> , 2018 , 24, A91-A91	0.7	
Corrigendum zu: Langzeitpotenzierung im Hippokampus: Entdeckung, Mechanismen und Funktion. <i>Neuroforum</i> , 2018 , 24, 305-305	0.7	
Langzeitpotenzierung im Hippokampus: Entdeckung, Mechanismen und Funktion. <i>Neuroforum</i> , 2018 , 24, 163-185	0.7	
The Probability of Neurotransmitter Release Governs AMPA Receptor Trafficking via Activity-Dependent Regulation of mGluR1 Surface Expression. <i>Cell Reports</i> , 2018 , 25, 3631-3646.e3	10.6	8
The Role of Calcium-Permeable AMPARs in Long-Term Potentiation at Principal Neurons in the Rodent Hippocampus. <i>Frontiers in Synaptic Neuroscience</i> , 2018 , 10, 42	3.5	36
Prevalence and influence of cys407* Grm2 mutation in Hannover-derived Wistar rats: mGlu2 receptor loss links to alcohol intake, risk taking and emotional behaviour. <i>Neuropharmacology</i> , 2017 , 115, 128-138	5.5	34
Learning about Synaptic GluA3. <i>Neuron</i> , 2017 , 93, 254-256	13.9	2
Differential ability of the dorsal and ventral rat hippocampus to exhibit group I metabotropic glutamate receptor-dependent synaptic and intrinsic plasticity. <i>Brain and Neuroscience Advances</i> , 2017 , 1,	4	9
Regulation of Hippocampal mGluR-Dependent Long-Term Depression by GluA2-Dependent Cofilin-Mediated Actin Remodeling 2017 , 225-239		1
Mechanism and properties of positive allosteric modulation of N-methyl-d-aspartate receptors by 6-alkyl 2-naphthoic acid derivatives. <i>Neuropharmacology</i> , 2017 , 125, 64-79	5.5	14
Synaptoimmunology - roles in health and disease. <i>Molecular Brain</i> , 2017 , 10, 26	4.5	21
Ephenidine: A new psychoactive agent with ketamine-like NMDA receptor antagonist properties. <i>Neuropharmacology</i> , 2017 , 112, 144-149	5.5	19
Developmental regulation of hippocampal long-term depression by cofilin-mediated actin reorganization. <i>Neuropharmacology</i> , 2017 , 112, 66-75	5.5	8
	Cell Reports, 2018, 22, 748-759 NMDAR-dependent Argonaute 2 phosphorylation regulates miRNA activity and dendritic spine plasticity. EMBO Journal, 2018, 37, Long-term potentiation in the hippocampus: discovery, mechanisms and function. Neuroforum, 2018, 24, A103-A120 Some distorted thoughts about ketamine as a psychedelic and a novel hypothesis based on NMDA receptor-mediated synaptic plasticity. Neuropharmacology, 2018, 142, 30-40 The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning. Nature Neuroscience, 2018, 21, 50-62 Corrigendum to: Long-term potentiation in the hippocampus: discovery, mechanisms and function. Neuroforum, 2018, 24, A91-A91 Corrigendum zu: Langzeitpotenzierung im Hippokampus: Entdeckung, Mechanismen und Funktion. Neuroforum, 2018, 24, 305-305 Langzeitpotenzierung im Hippokampus: Entdeckung, Mechanismen und Funktion. Neuroforum, 2018, 24, 163-185 The Probability of Neurotransmitter Release Governs AMPA Receptor Trafficking via Activity-Dependent Regulation of mGluR1 Surface Expression. Cell Reports, 2018, 25, 3631-3646.e3 The Role of Calcium-Permeable AMPARs in Long-Term Potentiation at Principal Neurons in the Rodent Hippocampus. Frontiers in Synaptic Neuroscience, 2018, 10, 42 Prevalence and influence of cys407* Grm2 mutation in Hannover-derived Wistar rats: mGlu2 receptor loss links to alcohol intake, risk taking and emotional behaviour. Neuropharmacology, 2017, 115, 128-138 Learning about Synaptic GluA3. Neuron, 2017, 93, 254-256 Differential ability of the dorsal and ventral rat hippocampus to exhibit group I metabotropic glutamate receptor-dependent synaptic and intrinsic plasticity. Brain and Neuroscience Advances, 2017, 115, 128-138 Learning about Synaptic GluA3. Neuron, 2017, 93, 254-256 Differential ability of the dorsal and ventral rat hippocampus to exhibit group I metabotropic glutamate receptor-dependent synaptic and intrinsic plasticity. Brain and Neuroscience Advances, 2017, 112, 144-149 Dev	NMDAR-dependent Argonaute 2 phosphorylation regulates miRNA activity and dendritic spine plasticity. EMBO Journal, 2018, 37. Long-term potentiation in the hippocampus: discovery, mechanisms and function. Neuroforum, 2018, 24, A103-A120 Some distorted thoughts about ketamine as a psychedelic and a novel hypothesis based on NMDA receptor-mediated synaptic plasticity. Neuropharmacology, 2018, 142, 30-40 The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning. Nature Neuroscience, 2018, 21, 50-62 Corrigendum to: Long-term potentiation in the hippocampus: discovery, mechanisms and function. Neurofarum, 2018, 24, A91-A91 Corrigendum zu: Langzeitpotenzierung im Hippokampus: Entdeckung, Mechanismen und Funktion. Neurofarum, 2018, 24, 305-305 Langzeitpotenzierung im Hippokampus: Entdeckung, Mechanismen und Funktion. Neurofarum, 2018, 24, 305-305 The Probability of Neurotransmitter Release Governs AMPA Receptor Trafficking via Activity-Dependent Regulation of mGluR1 Surface Expression. Cell Reports, 2018, 25, 3631-3646.e3 The Role of Calcium-Permeable AMPARs in Long-Term Potentiation at Principal Neurons in the Rodent Hippocampus. Frantiers in Synaptic Neuroscience, 2018, 10, 42 Prevalence and influence of cys407+ Grm2 mutation in Hannover-derived Wistar rats: mGlu2 receptor loss links to alcohol intake, risk taking and emotional behaviour. Neuropharmacology, 2017, 115, 128-138 Learning about Synaptic GluA3. Neuron, 2017, 93, 254-256 13-9 Differential ability of the dorsal and ventral rat hippocampus to exhibit group I metabotropic glutamate receptor-dependent synaptic and intrinsic plasticity. Brain and Neuroscience Advances, 2017, 11, 115, 128-138 Mechanism and properties of positive allosteric modulation of N-methyl-d-aspartate receptors by 6-alkyl 2-naphthoic acid derivatives. Neuropharmacology, 2017, 125, 64-79 Synaptoimmunology - roles in health and disease. Molecular Brain, 2017, 10, 26 Ephenidine: A new psychoactive agent with ket

284	Antidepressant Actions of Ketamine Versus Hydroxynorketamine. <i>Biological Psychiatry</i> , 2017 , 81, e65-e	67 .9	30
283	Multiple roles of GluN2B-containing NMDA receptors in synaptic plasticity in juvenile hippocampus. <i>Neuropharmacology</i> , 2017 , 112, 76-83	5.5	22
282	Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. <i>Nature Reviews Neuroscience</i> , 2016 , 17, 485-96	13.5	293
281	Hippocampal metabotropic glutamate receptor long-term depression in health and disease: focusion mitogen-activated protein kinase pathways. <i>Journal of Neurochemistry</i> , 2016 , 139 Suppl 2, 200	-214	38
280	Calcium-Permeable AMPA Receptors Mediate the Induction of the Protein Kinase A-Dependent Component of Long-Term Potentiation in the Hippocampus. <i>Journal of Neuroscience</i> , 2016 , 36, 622-31	6.6	59
279	The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation. <i>PLoS ONE</i> , 2016 , 11, e0147293	3.7	9
278	Pharmacological Investigations of the Dissociative Regal HighsPDiphenidine, Methoxphenidine and Analogues. <i>PLoS ONE</i> , 2016 , 11, e0157021	3.7	46
277	Synthesis of a Series of Novel 3,9-Disubstituted Phenanthrenes as Analogues of Known NMDA Receptor Allosteric Modulators. <i>Synthesis</i> , 2015 , 47, 1593-1610	2.9	7
276	An interchangeable role for kainate and metabotropic glutamate receptors in the induction of rat hippocampal mossy fiber long-term potentiation in vivo. <i>Hippocampus</i> , 2015 , 25, 1407-17	3.5	5
275	Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. <i>Scientific Reports</i> , 2015 , 5, 10934	4.9	54
274	Bidirectional modulation of hyperalgesia via the specific control of excitatory and inhibitory neuronal activity in the ACC. <i>Molecular Brain</i> , 2015 , 8, 81	4.5	80
273	Trans-Modulation of the Somatostatin Type 2A Receptor Trafficking by Insulin-Regulated Aminopeptidase Decreases Limbic Seizures. <i>Journal of Neuroscience</i> , 2015 , 35, 11960-75	6.6	14
272	Coexistence of two forms of LTP in ACC provides a synaptic mechanism for the interactions between anxiety and chronic pain. <i>Neuron</i> , 2015 , 85, 377-89	13.9	175
271	Long-term potentiation and the role of N-methyl-D-aspartate receptors. <i>Brain Research</i> , 2015 , 1621, 5-16	3.7	151
270	Strippers reveal their depressing secrets: removing AMPA receptors. <i>Neuron</i> , 2014 , 82, 3-6	13.9	8
269	Microtubule-associated protein tau is essential for long-term depression in the hippocampus. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369, 20130144	5.8	176
268	Rapid regulation of endoplasmic reticulum dynamics in dendritic spines by NMDA receptor activation. <i>Molecular Brain</i> , 2014 , 7, 60	4.5	19
267	NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369, 20130131	5.8	80

(2012-2014)

266	Effects of PI3KIbverexpression in the hippocampus on synaptic plasticity and spatial learning. <i>Molecular Brain</i> , 2014 , 7, 78	4.5	26	
265	Shank mutant mice as an animal model of autism. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369, 20130143	5.8	47	
264	Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. <i>Molecular Brain</i> , 2013 , 6, 5	4.5	193	
263	Long-term depression of synaptic transmission in the adult mouse insular cortex in vitro. <i>European Journal of Neuroscience</i> , 2013 , 38, 3128-45	3.5	25	
262	Wavelet transform-based de-noising for two-photon imaging of synaptic Ca2+ transients. <i>Biophysical Journal</i> , 2013 , 104, 1006-17	2.9	9	
261	Long-term potentiation of synaptic transmission in the adult mouse insular cortex: multielectrode array recordings. <i>Journal of Neurophysiology</i> , 2013 , 110, 505-21	3.2	49	
2 60	Acute stress causes rapid synaptic insertion of Ca2+-permeable AMPA receptors to facilitate long-term potentiation in the hippocampus. <i>Brain</i> , 2013 , 136, 3753-65	11.2	71	
259	Different NMDA receptor subtypes mediate induction of long-term potentiation and two forms of short-term potentiation at CA1 synapses in rat hippocampus in vitro. <i>Journal of Physiology</i> , 2013 , 591, 955-72	3.9	58	
258	The small GTPase Arf1 modulates Arp2/3-mediated actin polymerization via PICK1 to regulate synaptic plasticity. <i>Neuron</i> , 2013 , 79, 293-307	13.9	65	
257	Antagonists reversibly reverse chemical LTD induced by group I, group II and group III metabotropic glutamate receptors. <i>Neuropharmacology</i> , 2013 , 74, 135-46	5.5	25	
256	Differentiating the roles of mGlu2 and mGlu3 receptors using LY541850, an mGlu2 agonist/mGlu3 antagonist. <i>Neuropharmacology</i> , 2013 , 66, 114-21	5.5	22	
255	Characterisation of an mGlu8 receptor-selective agonist and antagonist in the lateral and medial perforant path inputs to the dentate gyrus. <i>Neuropharmacology</i> , 2013 , 67, 294-303	5.5	13	
254	Selective activation of either mGlu2 or mGlu3 receptors can induce LTD in the amygdala. <i>Neuropharmacology</i> , 2013 , 66, 196-201	5.5	15	
253	G protein-coupled receptor kinase 2 and group I metabotropic glutamate receptors mediate inflammation-induced sensitization to excitotoxic neurodegeneration. <i>Annals of Neurology</i> , 2013 , 73, 667-78	9.4	38	
252	The NMDA receptor as a target for cognitive enhancement. <i>Neuropharmacology</i> , 2013 , 64, 13-26	5.5	175	
251	The role of JAK-STAT signaling within the CNS. <i>Jak-stat</i> , 2013 , 2, e22925		157	
250	The roles of STP and LTP in synaptic encoding. <i>PeerJ</i> , 2013 , 1, e3	3.1	27	
249	Automated multi-slice extracellular and patch-clamp experiments using the WinLTP data acquisition system with automated perfusion control. <i>Journal of Neuroscience Methods</i> , 2012 , 207, 148	-6ð	7	

248	A pivotal role of GSK-3 in synaptic plasticity. Frontiers in Molecular Neuroscience, 2012, 5, 13	6.1	119
247	Synaptic kainate receptors in CA1 interneurons gate the threshold of theta-frequency-induced long-term potentiation. <i>Journal of Neuroscience</i> , 2012 , 32, 18215-26	6.6	10
246	Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. <i>Annals of Neurology</i> , 2012 , 72, 536-49	9.4	148
245	Inactivation of the constitutively active ghrelin receptor attenuates limbic seizure activity in rodents. <i>Neurotherapeutics</i> , 2012 , 9, 658-72	6.4	26
244	Piperazine-2,3-dicarboxylic acid derivatives as dual antagonists of NMDA and GluK1-containing kainate receptors. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 327-41	8.3	16
243	The Jak/STAT pathway is involved in synaptic plasticity. <i>Neuron</i> , 2012 , 73, 374-90	13.9	147
242	Alterations in hippocampal excitability, synaptic transmission and synaptic plasticity in a neurodevelopmental model of schizophrenia. <i>Neuropharmacology</i> , 2012 , 62, 1349-58	5.5	38
241	Targeting synaptic dysfunction in Alzheimer® disease therapy. <i>Molecular Neurobiology</i> , 2012 , 46, 572-8	76.2	62
240	Coumarin-3-carboxylic acid derivatives as potentiators and inhibitors of recombinant and native N-methyl-D-aspartate receptors. <i>Neurochemistry International</i> , 2012 , 61, 593-600	4.4	29
239	A novel anti-epileptic agent, perampanel, selectively inhibits AMPA receptor-mediated synaptic transmission in the hippocampus. <i>Neurochemistry International</i> , 2012 , 61, 517-22	4.4	75
238	Differences in kainate receptor involvement in hippocampal mossy fibre long-term potentiation depending on slice orientation. <i>Neurochemistry International</i> , 2012 , 61, 482-9	4.4	12
237	The methylazoxymethanol acetate (MAM-E17) rat model: molecular and functional effects in the hippocampus. <i>Neuropsychopharmacology</i> , 2012 , 37, 364-77	8.7	45
236	Plasticity of metabotropic glutamate receptor-dependent long-term depression in the anterior cingulate cortex after amputation. <i>Journal of Neuroscience</i> , 2012 , 32, 11318-29	6.6	56
235	Synaptic plasticity in the hippocampal slice preparation. <i>Current Protocols in Neuroscience</i> , 2011 , Chapter 6, Unit 6.13	2.7	19
234	PI3K[]s required for NMDA receptor-dependent long-term depression and behavioral flexibility. <i>Nature Neuroscience</i> , 2011 , 14, 1447-54	25.5	114
233	Metabotropic glutamate receptors: from the workbench to the bedside. <i>Neuropharmacology</i> , 2011 , 60, 1017-41	5.5	457
232	LTP in hippocampal neurons is associated with a CaMKII-mediated increase in GluA1 surface expression. <i>Journal of Neurochemistry</i> , 2011 , 116, 530-43	6	33
231	Sustained calcium signalling and caspase-3 activation involve NMDA receptors in thymocytes in contact with dendritic cells. <i>Cell Death and Differentiation</i> , 2011 , 18, 99-108	12.7	39

(2009-2011)

230	A[1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3 Nature Neuroscience, 2011 , 14, 545-7	25.5	240
229	Erasing injury-related cortical synaptic potentiation as a new treatment for chronic pain. <i>Journal of Molecular Medicine</i> , 2011 , 89, 847-55	5.5	21
228	Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs. <i>Molecular Brain</i> , 2011 , 4, 30	4.5	32
227	Study of novel selective mGlu2 agonist in the temporo-ammonic input to CA1 neurons reveals reduced mGlu2 receptor expression in a Wistar substrain with an anxiety-like phenotype. <i>Journal of Neuroscience</i> , 2011 , 31, 6721-31	6.6	29
226	Synergistic interactions between kainate and mGlu receptors regulate bouton Ca signalling and mossy fibre LTP. <i>Scientific Reports</i> , 2011 , 1, 103	4.9	17
225	Disruption of the interaction between myosin VI and SAP97 is associated with a reduction in the number of AMPARs at hippocampal synapses. <i>Journal of Neurochemistry</i> , 2010 , 112, 677-90	6	39
224	Long-term depression in the CNS. <i>Nature Reviews Neuroscience</i> , 2010 , 11, 459-73	13.5	644
223	Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95. <i>Nature Neuroscience</i> , 2010 , 13, 1216-24	25.5	78
222	A study of long-term potentiation in transgenic mice over-expressing mutant forms of both amyloid precursor protein and presenilin-1. <i>Molecular Brain</i> , 2010 , 3, 21	4.5	10
221	Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. <i>Science</i> , 2010 , 330, 1400-4	33.3	293
220	GLUK1 receptor antagonists and hippocampal mossy fiber function. <i>International Review of Neurobiology</i> , 2009 , 85, 13-27	4.4	6
219	Rapid endocytosis provides restricted somatic expression of a K+ channel in central neurons. <i>Journal of Cell Science</i> , 2009 , 122, 4186-94	5.3	14
218	A nomenclature for ligand-gated ion channels. <i>Neuropharmacology</i> , 2009 , 56, 2-5	5.5	458
217	ACET is a highly potent and specific kainate receptor antagonist: characterisation and effects on hippocampal mossy fibre function. <i>Neuropharmacology</i> , 2009 , 56, 121-30	5.5	39
216	Kainate receptors: pharmacology, function and therapeutic potential. <i>Neuropharmacology</i> , 2009 , 56, 90-113	5.5	211
215	Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD. <i>Molecular and Cellular Neurosciences</i> , 2009 , 40, 267-79	4.8	58
214	A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-alpha. <i>Molecular Brain</i> , 2009 , 2, 18	4.5	53
213	A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine/threonine kinases. <i>Molecular Brain</i> , 2009 , 2, 22	4.5	73

212	Neuronal calcium sensors and synaptic plasticity. <i>Biochemical Society Transactions</i> , 2009 , 37, 1359-63	5.1	39
211	Co-activation of p38 mitogen-activated protein kinase and protein tyrosine phosphatase underlies metabotropic glutamate receptor-dependent long-term depression. <i>Journal of Physiology</i> , 2008 , 586, 2499-510	3.9	80
210	The use of the hippocampal slice preparation in the study of Alzheimer® disease. <i>European Journal of Pharmacology</i> , 2008 , 585, 50-9	5.3	15
209	An essential role for PICK1 in NMDA receptor-dependent bidirectional synaptic plasticity. <i>Neuron</i> , 2008 , 57, 872-82	13.9	137
208	Metabotropic glutamate receptor-mediated LTD involves two interacting Ca(2+) sensors, NCS-1 and PICK1. <i>Neuron</i> , 2008 , 60, 1095-111	13.9	81
207	The induction of long-term plasticity of non-synaptic, synchronized activity by the activation of group I mGluRs. <i>Neuropharmacology</i> , 2008 , 55, 459-63	5.5	7
206	An analysis of the stimulus requirements for setting the molecular switch reveals a lower threshold for metaplasticity than synaptic plasticity. <i>Neuropharmacology</i> , 2008 , 55, 454-8	5.5	11
205	Mechanisms involved in the reduction of GABAA receptor alpha1-subunit expression caused by the epilepsy mutation A322D in the trafficking-competent receptor. <i>Journal of Biological Chemistry</i> , 2008 , 283, 22043-50	5.4	26
204	The tyrosine phosphatase STEP mediates AMPA receptor endocytosis after metabotropic glutamate receptor stimulation. <i>Journal of Neuroscience</i> , 2008 , 28, 10561-6	6.6	143
203	Capabilities of the WinLTP data acquisition program extending beyond basic LTP experimental functions. <i>Journal of Neuroscience Methods</i> , 2007 , 162, 346-56	3	167
202	Inhibition of kainate receptors reduces the frequency of hippocampal theta oscillations. <i>Journal of Neuroscience</i> , 2007 , 27, 2212-23	6.6	28
201	LTP inhibits LTD in the hippocampus via regulation of GSK3beta. <i>Neuron</i> , 2007 , 53, 703-17	13.9	547
200	Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus. <i>Neuropharmacology</i> , 2007 , 52, 1-11	5.5	67
199	Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. <i>Neuropharmacology</i> , 2007 , 52, 60-70	5.5	219
198	Synthesis and pharmacological characterization of N3-substituted willardiine derivatives: role of the substituent at the 5-position of the uracil ring in the development of highly potent and selective GLUK5 kainate receptor antagonists. <i>Journal of Medicinal Chemistry</i> , 2007 , 50, 1558-70	8.3	58
197	Tyrosine phosphatases regulate AMPA receptor trafficking during metabotropic glutamate receptor-mediated long-term depression. <i>Journal of Neuroscience</i> , 2006 , 26, 2544-54	6.6	151
196	Neuroscience. ZAP and ZIP, a story to forget. <i>Science</i> , 2006 , 313, 1058-9	33.3	40
195	Functional maturation of CA1 synapses involves activity-dependent loss of tonic kainate receptor-mediated inhibition of glutamate release. <i>Neuron</i> , 2006 , 50, 415-29	13.9	108

(2004-2006)

194	Promiscuous interactions between AMPA-Rs and MAGUKs. <i>Neuron</i> , 2006 , 52, 222-4	13.9	17
193	Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. <i>Nature Neuroscience</i> , 2006 , 9, 602-4	25.5	414
192	Novel pharmacological targets for the treatment of Parkinson® disease. <i>Nature Reviews Drug Discovery</i> , 2006 , 5, 845-54	64.1	229
191	Structure-activity relationship studies on N3-substituted willardiine derivatives acting as AMPA or kainate receptor antagonists. <i>Journal of Medicinal Chemistry</i> , 2006 , 49, 2579-92	8.3	47
190	Kainate receptors and mossy fiber LTP. <i>NeuroToxicology</i> , 2005 , 26, 769-77	4.4	35
189	Hippocalcin functions as a calcium sensor in hippocampal LTD. <i>Neuron</i> , 2005 , 47, 487-94	13.9	113
188	The regulation of hippocampal LTP by the molecular switch, a form of metaplasticity, requires mGlu5 receptors. <i>Neuropharmacology</i> , 2005 , 49 Suppl 1, 13-25	5.5	64
187	Synthesis and pharmacology of willardiine derivatives acting as antagonists of kainate receptors. Journal of Medicinal Chemistry, 2005 , 48, 7867-81	8.3	44
186	Mechanisms contributing to the exacerbated epileptiform activity in hippocampal slices expressing a C-terminal truncated GABA(B2) receptor subunit. <i>Epilepsy Research</i> , 2005 , 65, 41-51	3	7
185	Synaptic transmission and synchronous activity is disrupted in hippocampal slices taken from aged TAS10 mice. <i>Hippocampus</i> , 2005 , 15, 110-7	3.5	30
184	Endogenous activation of kainate receptors regulates glutamate release and network activity in the developing hippocampus. <i>Journal of Neuroscience</i> , 2005 , 25, 4473-84	6.6	95
183	Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. <i>Journal of Neuroscience</i> , 2004 , 24, 5172-6	6.6	201
182	Regulation of synaptic strength and AMPA receptor subunit composition by PICK1. <i>Journal of Neuroscience</i> , 2004 , 24, 5381-90	6.6	151
181	Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. <i>Journal of Neuroscience</i> , 2004 , 24, 7821-8	6.6	560
180	Multiple, developmentally regulated expression mechanisms of long-term potentiation at CA1 synapses. <i>Journal of Neuroscience</i> , 2004 , 24, 4903-11	6.6	63
179	Receptor trafficking and synaptic plasticity. <i>Nature Reviews Neuroscience</i> , 2004 , 5, 952-62	13.5	800
178	Interactions between NMDA receptors and mGlu5 receptors expressed in HEK293 cells. <i>British Journal of Pharmacology</i> , 2004 , 142, 991-1001	8.6	38
177	The GABA(B2) subunit is critical for the trafficking and function of native GABA(B) receptors. <i>Biochemical Pharmacology</i> , 2004 , 68, 1655-66	6	38

176	Endocannabinoids: losing inhibition to increase learning capacity?. Neuron, 2004, 43, 762-4	13.9	2
175	Characterisation of UBP296: a novel, potent and selective kainate receptor antagonist. <i>Neuropharmacology</i> , 2004 , 47, 46-64	5.5	87
174	Characterisation of the effects of ATPA, a GLU(K5) kainate receptor agonist, on GABAergic synaptic transmission in the CA1 region of rat hippocampal slices. <i>Neuropharmacology</i> , 2004 , 47, 363-72	5.5	20
173	Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity. <i>BMC Neuroscience</i> , 2004 , 5, 44	3.2	50
172	Delineation of the Physiological Role of Kainate Receptors by Use of Subtype Selective Ligands 2004 , 27-46		
171	Hippocampal synaptic plasticity in mice carrying the rd mutation in the gene encoding cGMP phosphodiesterase type 6 (PDE6). <i>Brain Research</i> , 2003 , 967, 144-51	3.7	16
170	Mechanisms contributing to the exacerbated epileptiform activity in hippocampal slices of GABAB1 receptor subunit knockout mice. <i>Epilepsy Research</i> , 2003 , 57, 121-36	3	25
169	Activation of mGlu receptors induces LTD without affecting postsynaptic sensitivity of CA1 neurons in rat hippocampal slices. <i>Journal of Physiology</i> , 2003 , 546, 455-60	3.9	45
168	Parallel kinase cascades are involved in the induction of LTP at hippocampal CA1 synapses. <i>Neuropharmacology</i> , 2003 , 45, 828-36	5.5	45
167	Functional roles of protein interactions with AMPA and kainate receptors. <i>Neuroscience Research</i> , 2003 , 47, 3-15	2.9	40
166	Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP. <i>Neuron</i> , 2003 , 37, 625-38	13.9	187
165	A role for Ca2+ stores in kainate receptor-dependent synaptic facilitation and LTP at mossy fiber synapses in the hippocampus. <i>Neuron</i> , 2003 , 39, 327-41	13.9	160
164	Introduction. Long-term potentiation and structure of the issue. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2003 , 358, 607-11	5.8	81
163	GluR2 protein-protein interactions and the regulation of AMPA receptors during synaptic plasticity. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2003 , 358, 715-20	5.8	22
162	Kainate receptors and the induction of mossy fibre long-term potentiation. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2003 , 358, 657-66	5.8	43
161	The induction of N-methyl-D-aspartate receptor-dependent long-term potentiation. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2003 , 358, 635-41	5.8	34
160	Altered short-term synaptic plasticity in mice lacking the metabotropic glutamate receptor mGlu7. <i>Scientific World Journal, The</i> , 2002 , 2, 730-7	2.2	45
159	Calcium stores and synaptic plasticity. <i>Cell Calcium</i> , 2002 , 32, 405-11	4	67

(2001-2002)

158	Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures. <i>Nature Neuroscience</i> , 2002 , 5, 796-804	25.5	130
157	Phosphatidylinositol 3 kinase regulates synapse specificity of hippocampal long-term depression. Nature Neuroscience, 2002 , 5, 835-6	25.5	53
156	Characterisation of the effects of ATPA, a GLU(K5) receptor selective agonist, on excitatory synaptic transmission in area CA1 of rat hippocampal slices. <i>Neuropharmacology</i> , 2002 , 42, 889-902	5.5	41
155	Group I mGluRs modulate the pattern of non-synaptic epileptiform activity in the hippocampus. <i>Neuropharmacology</i> , 2002 , 43, 141-6	5.5	25
154	Tyrosine dephosphorylation underlies DHPG-induced LTD. Neuropharmacology, 2002, 43, 175-80	5.5	46
153	A presynaptic kainate receptor is involved in regulating the dynamic properties of thalamocortical synapses during development. <i>Neuron</i> , 2002 , 34, 635-46	13.9	69
152	Impairment in hippocampal long-term potentiation in mice under-expressing the Alzheimerß disease related gene presenilin-1. <i>Neuroscience Letters</i> , 2002 , 319, 37-40	3.3	20
151	The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. <i>Journal of Neuroscience Methods</i> , 2001 , 108, 71-83	3	338
150	Protein phosphatase inhibitors facilitate DHPG-induced LTD in the CA1 region of the hippocampus. British Journal of Pharmacology, 2001 , 132, 1095-101	8.6	47
149	Mathematical modelling of non-stationary fluctuation analysis for studying channel properties of synaptic AMPA receptors. <i>Journal of Physiology</i> , 2001 , 537, 407-20	3.9	34
148	A characterisation of long-term depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro. <i>Journal of Physiology</i> , 2001 , 537, 421-30	3.9	153
147	Synaptic plasticity in the hippocampal slice preparation. <i>Current Protocols in Neuroscience</i> , 2001 , Chapter 6, Unit 6.13	2.7	10
146	GABA(B) receptors couple directly to the transcription factor ATF4. <i>Molecular and Cellular Neurosciences</i> , 2001 , 17, 637-45	4.8	77
145	A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. <i>Neuron</i> , 2001 , 32, 697-70	913.9	167
144	Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. <i>Neuropharmacology</i> , 2001 , 41, 700-13	5.5	92
143	An electrophysiological characterisation of long-term potentiation in cultured dissociated hippocampal neurones. <i>Neuropharmacology</i> , 2001 , 41, 693-9	5.5	33
142	Synaptic activation of a presynaptic kainate receptor facilitates AMPA receptor-mediated synaptic transmission at hippocampal mossy fibre synapses. <i>Neuropharmacology</i> , 2001 , 41, 907-15	5.5	64
141	Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. <i>Journal of Neuroscience</i> , 2001 , 21, 8734-45	6.6	164

140	Age-related impairment of synaptic transmission but normal long-term potentiation in transgenic mice that overexpress the human APP695SWE mutant form of amyloid precursor protein. <i>Journal of Neuroscience</i> , 2001 , 21, 4691-8	6.6	181
139	Modulation of synaptic transmission in the rat ventral septal area by the pharmacological activation of metabotropic glutamate receptors. <i>European Journal of Neuroscience</i> , 2000 , 12, 1843-7	3.5	9
138	A role for protein kinase C in a form of metaplasticity that regulates the induction of long-term potentiation at CA1 synapses of the adult rat hippocampus. <i>European Journal of Neuroscience</i> , 2000 , 12, 4055-62	3.5	57
137	Reduced long-term potentiation in hippocampal slices prepared using sucrose-based artificial cerebrospinal fluid. <i>Journal of Neuroscience Methods</i> , 2000 , 100, 117-22	3	32
136	A novel, competitive mGlu(5) receptor antagonist (LY344545) blocks DHPG-induced potentiation of NMDA responses but not the induction of LTP in rat hippocampal slices. <i>British Journal of Pharmacology</i> , 2000 , 131, 239-44	8.6	60
135	reply: Kainate receptors and synaptic plasticity. <i>Nature</i> , 2000 , 406, 957-957	50.4	6
134	Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. <i>Journal of Neuroscience</i> , 2000 , 20, 7922-31	6.6	178
133	Role of Ca2+ stores in metabotropic L-glutamate receptor-mediated supralinear Ca2+ signaling in rat hippocampal neurons. <i>Journal of Neuroscience</i> , 2000 , 20, 8628-36	6.6	77
132	Similar levels of long-term potentiation in amyloid precursor protein -null and wild-type mice in the CA1 region of picrotoxin treated slices. <i>Neuroscience Letters</i> , 2000 , 288, 9-12	3.3	38
131	PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. <i>Neuron</i> , 2000 , 28, 873-86	13.9	282
130	Kainate receptors are involved in synaptic plasticity. <i>Nature</i> , 1999 , 402, 297-301	50.4	277
129	Antagonist activity of alpha-substituted 4-carboxyphenylglycine analogues at group I metabotropic glutamate receptors expressed in CHO cells. <i>British Journal of Pharmacology</i> , 1999 , 126, 205-10	8.6	24
128	Expression of early hippocampal CA1 LTP does not lead to changes in AMPA-EPSC kinetics or sensitivity to cyclothiazide. <i>Pflugers Archiv European Journal of Physiology</i> , 1999 , 437, 191-6	4.6	13
127	Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. <i>Current Opinion in Neurobiology</i> , 1999 , 9, 299-304	7.6	166
126	Regulation of depolarizing GABA(A) receptor-mediated synaptic potentials by synaptic activation of GABA(B) autoreceptors in the rat hippocampus. <i>Neuropharmacology</i> , 1999 , 38, 1723-32	5.5	27
125	Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. <i>Neuron</i> , 1999 , 23, 365-76	13.9	296
124	Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. <i>Neuron</i> , 1999 , 24, 389-99	13.9	281
123	Synaptic depression induced by pharmacological activation of metabotropic glutamate receptors in the perirhinal cortex in vitro. <i>Neuroscience</i> , 1999 , 93, 977-84	3.9	31

122	Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. <i>Neuropharmacology</i> , 1999 , 38, 349-59	5.5	199
121	A CaMKII inhibitor, KN-62, facilitates DHPG-induced LTD in the CA1 region of the hippocampus. <i>Neuropharmacology</i> , 1999 , 38, 605-8	5.5	30
120	An investigation into signal transduction mechanisms involved in DHPG-induced LTD in the CA1 region of the hippocampus. <i>Neuropharmacology</i> , 1999 , 38, 1585-96	5.5	74
119	DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterisation and sensitivity to novel mGlu receptor antagonists. <i>Neuropharmacology</i> , 1999 , 38, 1577-83	5.5	144
118	Rapid internalization and surface expression of a functional, fluorescently tagged G-protein-coupled glutamate receptor. <i>Biochemical Journal</i> , 1999 , 341, 415-422	3.8	39
117	Evidence that a novel metabotropic glutamate receptor mediates the induction of long-term potentiation at CA1 synapses in the hippocampus. <i>Biochemical Society Transactions</i> , 1999 , 27, 170-4	5.1	7
116	Rapid internalization and surface expression of a functional, fluorescently tagged G-protein-coupled glutamate receptor. <i>Biochemical Journal</i> , 1999 , 341, 415	3.8	16
115	Modulation of AMPA receptor unitary conductance by synaptic activity. <i>Nature</i> , 1998 , 393, 793-7	50.4	427
114	A new intrathalamic pathway linking modality-related nuclei in the dorsal thalamus. <i>Nature Neuroscience</i> , 1998 , 1, 389-94	25.5	107
113	A characterization of muscarinic receptor-mediated intracellular Ca2+ mobilization in cultured rat hippocampal neurones. <i>Journal of Physiology</i> , 1998 , 511 (Pt 3), 747-59	3.9	58
112	Ca2+ and synaptic plasticity. <i>Cell Calcium</i> , 1998 , 24, 377-85	4	51
111	NSF binding to GluR2 regulates synaptic transmission. <i>Neuron</i> , 1998 , 21, 87-97	13.9	498
110	An investigation of the expression mechanism of LTP of AMPA receptor-mediated synaptic transmission at hippocampal CA1 synapses using failures analysis and dendritic recordings. <i>Neuropharmacology</i> , 1998 , 37, 1399-410	5.5	28
109	The potent mGlu receptor antagonist LY341495 identifies roles for both cloned and novel mGlu receptors in hippocampal synaptic plasticity. <i>Neuropharmacology</i> , 1998 , 37, 1445-58	5.5	141
108	The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus. <i>Neuropharmacology</i> , 1998 , 37, 1269-77	5.5	134
107	Involvement of calcium/calmodulin-dependent protein kinases in the setting of a molecular switch involved in hippocampal LTP. <i>Neuropharmacology</i> , 1998 , 37, 535-44	5.5	49
106	GFP fusion proteins and AMPA receptor trafficking. <i>Biochemical Society Transactions</i> , 1997 , 25, 540S	5.1	4
105	(RS)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but no mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus. <i>Neuropharmacology</i> , 1997 , 36, 265-	7 ^{5.5}	298

104	The synaptic activation of the GluR5 subtype of kainate receptor in area CA3 of the rat hippocampus. <i>Neuropharmacology</i> , 1997 , 36, 1477-81	5.5	62
103	The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. <i>Neuropharmacology</i> , 1997 , 36, 1517-32	5.5	280
102	A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. <i>Nature</i> , 1997 , 389, 599-603	50.4	386
101	The synaptic activation of kainate receptors. <i>Nature</i> , 1997 , 388, 179-82	50.4	359
100	Effects of memantine and MK-801 on NMDA-induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. <i>British Journal of Pharmacology</i> , 1996 , 117, 689-97	8.6	108
99	Pharmacological antagonism of the actions of group II and III mGluR agonists in the lateral perforant path of rat hippocampal slices. <i>British Journal of Pharmacology</i> , 1996 , 117, 1457-62	8.6	87
98	Effects of memantine on recombinant rat NMDA receptors expressed in HEK 293 cells. <i>British Journal of Pharmacology</i> , 1996 , 119, 195-204	8.6	80
97	NMDA receptor dependence of mGlu-mediated depression of synaptic transmission in the CA1 region of the rat hippocampus. <i>British Journal of Pharmacology</i> , 1996 , 119, 1239-47	8.6	25
96	Interactions of 2,3-benzodiazepines and cyclothiazide at AMPA receptors: patch clamp recordings in cultured neurones and area CA1 in hippocampal slices. <i>British Journal of Pharmacology</i> , 1996 , 117, 1209-21	8.6	43
95	Activation of group I mGluRs potentiates NMDA responses in rat hippocampal slices. <i>Neuroscience Letters</i> , 1996 , 203, 211-3	3.3	172
94	Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons. <i>Neuroscience</i> , 1996 , 75, 69-82	3.9	65
93	Ca2+stores and hippocampal synaptic plasticity. <i>Seminars in Neuroscience</i> , 1996 , 8, 301-309		17
92	Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. <i>Nature</i> , 1996 , 379, 78-81	50.4	354
91	The brain slice preparation: a tribute to the pioneer Henry McIlwain. <i>Journal of Neuroscience Methods</i> , 1995 , 59, 5-9	3	50
90	Studies on the role of metabotropic glutamate receptors in long-term potentiation: some methodological considerations. <i>Journal of Neuroscience Methods</i> , 1995 , 59, 19-24	3	61
89	Antagonism of the synaptic depressant actions of L-AP4 in the lateral perforant path by MAP4. <i>Neuropharmacology</i> , 1995 , 34, 239-41	5.5	52
88	On the mechanism of long-term potentiation induced by (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) in rat hippocampal slices. <i>Neuropharmacology</i> , 1995 , 34, 1003-14	5.5	53
87	Pharmacological evidence for an involvement of group II and group III mGluRs in the presynaptic regulation of excitatory synaptic responses in the CA1 region of rat hippocampal slices. Neuropharmacology, 1995, 34, 973-82	5.5	63

86	Pharmacology of postsynaptic metabotropic glutamate receptors in rat hippocampal CA1 pyramidal neurones. <i>British Journal of Pharmacology</i> , 1995 , 116, 1859-69	8.6	86
85	Calcium transients in voltage-clamped dendrites of hippocampal neurons evoked by different patterns of synaptic activity. <i>Biochemical Society Transactions</i> , 1995 , 23, 653-5	5.1	2
84	Whole-Cell Patch Recording with Simultaneous Measurement of Intracellular Calcium Concentration in Mammalian Brain Slices in Vitro. <i>Methods in Neurosciences</i> , 1994 , 19, 340-358		4
83	An investigation of depotentiation of long-term potentiation in the CA1 region of the hippocampus. <i>Experimental Brain Research</i> , 1994 , 100, 437-43	2.3	180
82	A comparison of paired-pulsed facilitation of AMPA and NMDA receptor-mediated excitatory postsynaptic currents in the hippocampus. <i>Experimental Brain Research</i> , 1994 , 101, 272-8	2.3	74
81	A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. <i>Nature</i> , 1994 , 368, 740-3	50.4	454
80	Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. <i>Nature</i> , 1994 , 372, 237-43	50.4	708
79	The nitric oxidecyclic GMP pathway and synaptic depression in rat hippocampal slices. <i>European Journal of Neuroscience</i> , 1994 , 6, 1528-35	3.5	127
78	Activation of the NO-cGMP signalling pathway depresses hippocampal synaptic transmission through an adenosine receptor-dependent mechanism. <i>Neuropharmacology</i> , 1994 , 33, 1511-3	5.5	44
77	In vitro translation and membrane topology of rat recombinant mGluR1 alpha. <i>Neuropharmacology</i> , 1994 , 33, 1065-70	5.5	15
76	Phenylglycine derivatives as antagonists of metabotropic glutamate receptors. <i>Trends in Pharmacological Sciences</i> , 1994 , 15, 333-42	13.2	271
75	Stereoselective antagonism of the metabotropic glutamate receptor mGluR1 alpha by alpha-methyl-4-carboxyphenylglycine. <i>Biochemical Society Transactions</i> , 1994 , 22, 138S	5.1	
74	Metabotropic glutamate receptors contribute to the induction of long-term depression in the CA1 region of the hippocampus. <i>European Journal of Pharmacology</i> , 1993 , 239, 265-6	5.3	101
73	Signal transduction pathways involved in the acute potentiation of NMDA responses by 1S,3R-ACPD in rat hippocampal slices. <i>British Journal of Pharmacology</i> , 1993 , 109, 1085-90	8.6	117
72	Carbachol can potentiate N-methyl-D-aspartate responses in the rat hippocampus by a staurosporine and thapsigargin-insensitive mechanism. <i>Neuroscience Letters</i> , 1993 , 162, 165-8	3.3	33
71	The physiological regulation of synaptic inhibition by GABAB autoreceptors in rat hippocampus. <i>Journal of Physiology</i> , 1993 , 472, 245-65	3.9	141
70	N-Methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1993 , 90, 7819	9- 23 5	76
69	Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. <i>Journal of Physiology</i> , 1993 , 469, 693-716	3.9	194

68	Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. <i>Nature</i> , 1993 , 363, 347-50	50.4	662
67	A synaptic model of memory: long-term potentiation in the hippocampus. <i>Nature</i> , 1993 , 361, 31-9	50.4	9535
66	Mechanisms involved in hippocampal LTP: implications for retrograde messengers. <i>Seminars in Neuroscience</i> , 1993 , 5, 189-195		5
65	Metabotropic glutamate receptors and calcium signalling in dendrites of hippocampal CA1 neurones. <i>Neuropharmacology</i> , 1993 , 32, 1229-37	5.5	42
64	Antagonism of baclofen-induced depression of whole-cell synaptic currents in spinal dorsal horn neurones by the potent GABAB antagonist CGP55845. <i>Neuropharmacology</i> , 1993 , 32, 1437-40	5.5	32
63	CGP 55845A: a potent antagonist of GABAB receptors in the CA1 region of rat hippocampus. <i>Neuropharmacology</i> , 1993 , 32, 1071-3	5.5	99
62	Characterisation of LTP induced by the activation of glutamate metabotropic receptors in area CA1 of the hippocampus. <i>Neuropharmacology</i> , 1993 , 32, 1-9	5.5	232
61	Interactions between Ca2+ mobilizing mechanisms in cultured rat cerebellar granule cells. <i>Journal of Physiology</i> , 1992 , 456, 667-80	3.9	109
60	Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices. <i>Neuroscience Letters</i> , 1992 , 139, 197-200	3.3	140
59	Synaptic plasticity: long-term potentiation in the hippocampus. <i>Current Opinion in Neurobiology</i> , 1992 , 2, 328-35	7.6	26
58	Activation of glutamate metabotropic receptors induces long-term potentiation. <i>European Journal of Pharmacology</i> , 1992 , 214, 297-8	5.3	70
57	NMDA Receptor-dependent Transient Homo- and Heterosynaptic Depression in Picrotoxin-treated Hippocampal Slices. <i>European Journal of Neuroscience</i> , 1992 , 4, 485-490	3.5	31
56	Synaptic plasticity: long-term potentiation in the hippocampus. Current Biology, 1992, 2, 292	6.3	2
55	L-glutamate and acetylcholine mobilise Ca2+ from the same intracellular pool in cerebellar granule cells using transduction mechanisms with different Ca2+ sensitivities. <i>Cell Calcium</i> , 1992 , 13, 293-301	4	71
54	Amino acid receptor-mediated synaptic currents in the CA1 region of the hippocampus. <i>Ion Channels</i> , 1992 , 3, 63-81		4
53	Ammonium ions mobilize calcium from an internal pool which is insensitive to TRH and ionomycin in bovine anterior pituitary cells. <i>Cell Calcium</i> , 1991 , 12, 301-12	4	33
52	Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. <i>Nature</i> , 1991 , 349, 156-8	50.4	325
51	GABA autoreceptors regulate the induction of LTP. <i>Nature</i> , 1991 , 349, 609-11	50.4	518

50	Electrogenic uptake contributes a major component of the depolarizing action of L-glutamate in rat hippocampal slices. <i>British Journal of Pharmacology</i> , 1991 , 102, 355-62	8.6	19
49	Involvement of excitatory amino acid receptors in long-term potentiation in the Schaffer collateral-commissural pathway of rat hippocampal slices. <i>Canadian Journal of Physiology and Pharmacology</i> , 1991 , 69, 1084-90	2.4	19
48	Simultaneous Ca2+ imaging and electrophysiological analysis demonstrate source of Ca2+ for EAA receptors. <i>Trends in Pharmacological Sciences</i> , 1991 , 12, 169-70	13.2	2
47	From Excitatory Amino Acid Receptors to Long-Term Potentiation: An Insight into the Role of Ca2+ 1991 , 43-53		1
46	Characterization of synaptic components in rat hippocampal slices using whole cell patch clamp techniques. <i>Biochemical Society Transactions</i> , 1990 , 18, 430-1	5.1	2
45	Quinoxalinediones as excitatory amino acid antagonists in the vertebrate central nervous system. <i>International Review of Neurobiology</i> , 1990 , 32, 281-303	4.4	13
44	Activation of a K-252b-Sensitive Protein Kinase is Necessary for a Post-Synaptic Phase of Long-Term Potentiation in Area CA1 of Rat Hippocampus. <i>European Journal of Neuroscience</i> , 1990 , 2, 481-6	3.5	51
43	Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. <i>Journal of Physiology</i> , 1990 , 424, 513-31	3.9	579
42	Activation of the glycine site in the NMDA receptor is necessary for the induction of LTP. <i>Neuroscience Letters</i> , 1990 , 108, 261-6	3.3	71
41	Excitatory amino acid receptors and synaptic plasticity. <i>Trends in Pharmacological Sciences</i> , 1990 , 11, 290-6	13.2	766
40	Les agents provocateurs: a series on the pharmacology of excitatory amino acids. <i>Trends in Pharmacological Sciences</i> , 1990 , 11, 22-4	13.2	26
39	Whole-cell patch-clamp recordings of an NMDA receptor-mediated synaptic current in rat hippocampal slices. <i>Neuroscience Letters</i> , 1990 , 114, 191-6	3.3	27
38	1S,3R-ACPD stimulates and L-AP3 blocks Ca2+ mobilization in rat cerebellar neurons. <i>European Journal of Pharmacology</i> , 1990 , 186, 363-5	5.3	133
37	Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation. <i>Nature</i> , 1989 , 338, 500-3	50.4	408
36	Learning by handshake?. <i>Nature</i> , 1989 , 339, 588	50.4	
35	Low-frequency activation of the NMDA receptor system can prevent the induction of LTP. <i>Neuroscience Letters</i> , 1989 , 105, 205-10	3.3	130
34	6-Cyano-7-nitroquinoxaline-2,3-dione as an excitatory amino acid antagonist in area CA1 of rat hippocampus. <i>British Journal of Pharmacology</i> , 1989 , 97, 71-6	8.6	36
33	A quantitative study of the actions of excitatory amino acids and antagonists in rat hippocampal slices. <i>British Journal of Pharmacology</i> , 1988 , 95, 291-9	8.6	36

32	Ketamine blocks an NMDA receptor-mediated component of synaptic transmission in rat hippocampus in a voltage-dependent manner. <i>Neuroscience Letters</i> , 1988 , 92, 213-7	3.3	43
31	CNQX blocks acidic amino acid induced depolarizations and synaptic components mediated by non-NMDA receptors in rat hippocampal slices. <i>Neuroscience Letters</i> , 1988 , 89, 182-6	3.3	156
30	Voltage-clamp analysis of somatic gamma-aminobutyric acid responses in adult rat hippocampal CA1 neurones in vitro. <i>Journal of Physiology</i> , 1987 , 384, 27-37	3.9	22
29	MK-801 blocks NMDA receptor-mediated synaptic transmission and long term potentiation in rat hippocampal slices. <i>Neuroscience Letters</i> , 1987 , 80, 111-4	3.3	163
28	Effects of phencyclidine, SKF 10,047 and related psychotomimetic agents on N-methyl-D-aspartate receptor mediated synaptic responses in rat hippocampal slices. <i>British Journal of Pharmacology</i> , 1987 , 91, 547-56	8.6	86
27	NMDA receptors - their role in long-term potentiation. <i>Trends in Neurosciences</i> , 1987 , 10, 288-293	13.3	1013
26	Characterization of an N-methyl-D-aspartate receptor component of synaptic transmission in rat hippocampal slices. <i>Neuroscience</i> , 1987 , 22, 1-8	3.9	69
25	Synaptic plasticity. The role of NMDA receptors in learning and memory. <i>Nature</i> , 1987 , 330, 604-5	50.4	335
24	Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. <i>Nature</i> , 1986 , 322, 265-8	50.4	362
23	Magnesium ions block an N-methyl-D-aspartate receptor-mediated component of synaptic transmission in rat hippocampus. <i>Neuroscience Letters</i> , 1985 , 53, 21-6	3.3	194
22	A selective N-methyl-D-aspartate antagonist depresses epileptiform activity in rat hippocampal slices. <i>Neuroscience Letters</i> , 1985 , 61, 255-60	3.3	190
21	Intracellular demonstration of an N-methyl-D-aspartate receptor mediated component of synaptic transmission in the rat hippocampus. <i>Neuroscience Letters</i> , 1985 , 60, 19-23	3.3	130
20	Long term potentiation in the hippocampus: mechanisms of initiation and modulation by neurotransmitters. <i>Trends in Pharmacological Sciences</i> , 1985 , 6, 407-411	13.2	147
19	Effects of folic and kainic acids on synaptic responses of hippocampal neurones. <i>Neuroscience</i> , 1984 , 11, 111-24	3.9	33
18	The action of some analogues of the excitatory amino acids in the dentate gyrus of the rat. <i>Canadian Journal of Physiology and Pharmacology</i> , 1984 , 62, 424-9	2.4	24
17	Inhibitory post-synaptic currents in rat hippocampal CA1 neurones. <i>Journal of Physiology</i> , 1984 , 356, 55	1 ₃ 694	130
16	Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. <i>Journal of Physiology</i> , 1983 , 334, 33-46	3.9	1767
15	The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro. <i>Journal of Physiology</i> , 1983 , 334, 19-31	3.9	302

LIST OF PUBLICATIONS

14	Actions of substance P and opiates in the rat substantia nigra. <i>Neuropharmacology</i> , 1982 , 21, 715-9	5.5	42
13	The in vitro inhibition of GABA release by tetanus toxin. <i>Neuropharmacology</i> , 1982 , 21, 851-5	5.5	21
12	Reversible effects of tetanus toxin on striatal-evoked responses and [3H]-gamma-aminobutyric acid release in the rat substantia nigra. <i>British Journal of Pharmacology</i> , 1982 , 76, 403-11	8.6	7
11	Evidence for the participation of nigrotectal gamma-aminobutyrate-containing neurones in striatal and nigral-derived circling in the rat. <i>Neuroscience</i> , 1982 , 7, 207-22	3.9	236
10	Electrophysiological evidence for the existence of crossed nigrostriatal fibers. Experientia, 1982, 38, 81	12-3	10
9	Intracellular recorded synaptic antagonism in the rat dentate gyrus. <i>Nature</i> , 1982 , 300, 450-2	50.4	39
8	The influence of striatal stimulation and putative neurotransmitters on identified neurones in the rat substantia nigra. <i>Brain Research</i> , 1981 , 212, 345-59	3.7	96
7	The effect of kainic acid on excitatory synaptic activity in the rat hippocampal slice preparation. <i>Neuroscience Letters</i> , 1981 , 27, 31-6	3.3	13
6	In vitro effect of tetanus toxin on GABA release form rat hippocampal slices. <i>Journal of Neurochemistry</i> , 1981 , 37, 1039-41	6	47
5	Antidromic latency variations of nigral compacta neurones. <i>Experientia</i> , 1980 , 36, 970-1		25
4	Effect of tetanus toxin on transmitter release from substantia nigra and striatum in vitro. <i>Journal of Neurochemistry</i> , 1980 , 34, 540-7	6	55
3	Rapid behavioural and biochemical effects of tetanus toxin microinjected into the substantia nigra: a dual role for GABA?. <i>Neuroscience Letters</i> , 1979 , 11, 205-8	3.3	19
2	An evaluation of D-alpha-aminoadipate and D-(and DL-)alpha-aminosuberate as selective antagonists of excitatory amino acids in the substantia nigra and mesencephalic reticular formation of the rat. <i>Neuropharmacology</i> , 1979 , 18, 193-9	5.5	37
1	Characterization of a calcium-activated cytidine triphosphate phosphohydrolase present in dorsal spinal nerve roots. <i>Journal of Neurochemistry</i> , 1978 , 31, 681-4	6	2