Robert F Margolskee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6975576/publications.pdf

Version: 2024-02-01

148 papers 17,660 citations

70 h-index 130 g-index

151 all docs

151 docs citations

151 times ranked

9320 citing authors

#	Article	IF	CITATIONS
1	RNF43/ZNRF3 negatively regulates taste tissue homeostasis and positively regulates dorsal lingual epithelial tissue homeostasis. Stem Cell Reports, 2022, 17, 369-383.	2.3	6
2	Expression of taste signaling elements in jejunal tissue in subjects with obesity. Journal of Oral Biosciences, 2022, 64, 155-158.	0.8	3
3	Phosphatidylinositolâ€3 kinase mediates the sweet suppressive effect of leptin in mouse taste cells. Journal of Neurochemistry, 2021, 158, 233-245.	2.1	6
4	The Gustatory Sensory G-Protein GNAT3 Suppresses Pancreatic Cancer Progression in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 349-369.	2.3	25
5	Inhibition of Bitter Taste from Oral Tenofovir Alafenamide. Molecular Pharmacology, 2021, 99, 319-327.	1.0	7
6	Up-regulation of gasdermin C in mouse small intestine is associated with lytic cell death in enterocytes in worm-induced type 2 immunity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	33
7	Nkx2-2 expressing taste cells in endoderm-derived taste papillae are committed to the type III lineage. Developmental Biology, 2021, 477, 232-240.	0.9	3
8	Evidence that human oral glucose detection involves a sweet taste pathway and a glucose transporter pathway. PLoS ONE, 2021, 16, e0256989.	1.1	16
9	R-spondin substitutes for neuronal input for taste cell regeneration in adult mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
10	Sodiumâ€glucose cotransporter 1 as a sugar taste sensor in mouse tongue. Acta Physiologica, 2020, 230, e13529.	1.8	39
11	Lipopolysaccharide-Induced Inflammatory Cytokine Expression in Taste Organoids. Chemical Senses, 2020, 45, 187-194.	1.1	19
12	Effects of insulin signaling on mouse taste cell proliferation. PLoS ONE, 2019, 14, e0225190.	1.1	17
13	Gingival solitary chemosensory cells are immune sentinels for periodontitis. Nature Communications, 2019, 10, 4496.	5.8	40
14	Metal Ions Activate the Human Taste Receptor TAS2R7. Chemical Senses, 2019, 44, 339-347.	1.1	43
15	Aggravated gut inflammation in mice lacking the taste signaling protein \hat{l}_{\pm} -gustducin. Brain, Behavior, and Immunity, 2018, 71, 23-27.	2.0	23
16	Bitter Taste Responses of Gustducin-positive Taste Cells in Mouse Fungiform and Circumvallate Papillae. Neuroscience, 2018, 369, 29-39.	1.1	15
17	Effects of Taste Signaling Protein Abolishment on Gut Inflammation in an Inflammatory Bowel Disease Mouse Model. Journal of Visualized Experiments, 2018, , .	0.2	7
18	Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5552-5557.	3.3	203

#	Article	IF	Citations
19	Gli3 is a negative regulator of Tas1r3-expressing taste cells. PLoS Genetics, 2018, 14, e1007058.	1.5	27
20	Transcriptome analyses of taste organoids reveal multiple pathways involved in taste cell generation. Scientific Reports, 2017, 7, 4004.	1.6	40
21	Bacterial $\langle scp \rangle d \langle scp \rangle$ -amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Science Signaling, 2017, 10, .	1.6	89
22	Whole transcriptome profiling of taste bud cells. Scientific Reports, 2017, 7, 7595.	1.6	69
23	Taste cell-expressed î±-glucosidase enzymes contribute to gustatory responses to disaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6035-6040.	3.3	85
24	Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms. Journal of Neuroscience, 2016, 36, 1942-1953.	1.7	98
25	Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science, 2016, 351, 1329-1333.	6.0	707
26	Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R552-R560.	0.9	69
27	Glucagonâ€like peptideâ€1 is specifically involved in sweet taste transmission. FASEB Journal, 2015, 29, 2268-2280.	0.2	75
28	Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds. Diabetes, 2015, 64, 3751-3762.	0.3	53
29	Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor. Chemical Senses, 2015, 40, 577-586.	1.1	64
30	Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus). PLoS ONE, 2015, 10, e0139670.	1.1	42
31	Differential contribution of TRPM4 and TRPM5 nonselective cation channels to the slow afterdepolarization in mouse prefrontal cortex neurons. Frontiers in Cellular Neuroscience, 2014, 8, 267.	1.8	38
32	Bitter and sweet taste receptors regulate human upper respiratory innate immunity. Journal of Clinical Investigation, 2014, 124, 1393-1405.	3.9	340
33	The Bamboo-Eating Giant Panda (Ailuropoda melanoleuca) Has a Sweet Tooth: Behavioral and Molecular Responses to Compounds That Taste Sweet to Humans. PLoS ONE, 2014, 9, e93043.	1.1	12
34	Endocrine taste cells. British Journal of Nutrition, 2014, 111, S23-S29.	1.2	44
35	Expression and nuclear translocation of glucocorticoid receptors in type 2 taste receptor cells. Neuroscience Letters, 2014, 571, 72-77.	1.0	13
36	Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency. Molecular Metabolism, 2014, 3, 191-201.	3.0	153

#	Article	IF	Citations
37	Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16401-16406.	3.3	171
38	Mouse nasal epithelial innate immune responses to <i>Pseudomonas aeruginosa</i> quorum-sensing molecules require taste signaling components. Innate Immunity, 2014, 20, 606-617.	1.1	93
39	Lgr5-EGFP Marks Taste Bud Stem/Progenitor Cells in Posterior Tongue. Stem Cells, 2013, 31, 992-1000.	1.4	124
40	Angiotensin II Modulates Salty and Sweet Taste Sensitivities. Journal of Neuroscience, 2013, 33, 6267-6277.	1.7	77
41	Gustducin couples fatty acid receptors to GLP-1 release in colon. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E651-E660.	1.8	33
42	Genetic loss or pharmacological blockade of testes-expressed taste genes causes male sterility. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12319-12324.	3.3	61
43	Impact of T1r3 and Trpm5 on Carbohydrate Preference and Acceptance in C57BL/6 Mice. Chemical Senses, 2013, 38, 421-437.	1.1	37
44	Reply to Zhao and Zhang: Loss of taste receptor function in mammals is directly related to feeding specializations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, .	3.3	5
45	Targeted Taste Cell-specific Overexpression of Brain-derived Neurotrophic Factor in Adult Taste Buds Elevates Phosphorylated TrkB Protein Levels in Taste Cells, Increases Taste Bud Size, and Promotes Gustatory Innervation. Journal of Biological Chemistry, 2012, 287, 16791-16800.	1.6	30
46	A Conditioned Aversion Study of Sucrose and SC45647 Taste in TRPM5 Knockout Mice. Chemical Senses, 2012, 37, 391-401.	1.1	18
47	The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice. Physiology and Behavior, 2012, 107, 50-58.	1.0	46
48	Umami taste in mice uses multiple receptors and transduction pathways. Journal of Physiology, 2012, 590, 1155-1170.	1.3	87
49	Major taste loss in carnivorous mammals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4956-4961.	3.3	237
50	Glucose transporters and ATP-gated K ⁺ (K _{ATP}) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5431-5436.	3.3	181
51	G Proteins in Gustatory Transduction. , 2010, , 1721-1726.		0
52	Action Potential–Enhanced ATP Release From Taste Cells Through Hemichannels. Journal of Neurophysiology, 2010, 104, 896-901.	0.9	82
53	REEP2 Enhances Sweet Receptor Function by Recruitment to Lipid Rafts. Journal of Neuroscience, 2010, 30, 13774-13783.	1.7	49
54	Loss of high-frequency glucose-induced Ca ²⁺ oscillations in pancreatic islets correlates with impaired glucose tolerance in <i> Trpm5 ^{â^'/â^'} </i> mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5208-5213.	3.3	187

#	Article	IF	CITATIONS
55	Gustation Genetics: Sweet Gustducin!. Chemical Senses, 2010, 35, 549-550.	1.1	8
56	Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1643-R1650.	0.9	84
57	Endocannabinoids selectively enhance sweet taste. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 935-939.	3.3	177
58	Contribution of the T1r3 Taste Receptor to the Response Properties of Central Gustatory Neurons. Journal of Neurophysiology, 2009, 101, 2459-2471.	0.9	46
59	Role of Olfaction in the Conditioned Sucrose Preference of Sweet-Ageusic T1R3 Knockout Mice. Chemical Senses, 2009, 34, 685-694.	1.1	35
60	T1R3 taste receptor is critical for sucrose but not Polycose taste. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R866-R876.	0.9	113
61	Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R960-R971.	0.9	76
62	Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. American Journal of Clinical Nutrition, 2009, 90, 822S-825S.	2.2	161
63	Expression of the voltageâ€gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its nullâ€mutation on taste preferences. Journal of Comparative Neurology, 2009, 512, 384-398.	0.9	32
64	Discrimination of taste qualities among mouse fungiform taste bud cells. Journal of Physiology, 2009, 587, 4425-4439.	1.3	98
65	Phenoxy Herbicides and Fibrates Potently Inhibit the Human Chemosensory Receptor Subunit T1R3. Journal of Medicinal Chemistry, 2009, 52, 6931-6935.	2.9	35
66	Release of Endogenous Opioids From Duodenal Enteroendocrine Cells Requires Trpm5. Gastroenterology, 2009, 137, 598-606.e2.	0.6	74
67	T1r3 and αâ€Gustducin in Gut Regulate Secretion of Glucagonâ€like Peptideâ€1. Annals of the New York Academy of Sciences, 2009, 1170, 91-94.	1.8	94
68	Transsynaptic transport of wheat germ agglutinin expressed in a subset of type II taste cells of transgenic mice. BMC Neuroscience, 2008, 9, 96.	0.8	53
69	Tonic activity of Gαâ€gustducin regulates taste cell responsivity. FEBS Letters, 2008, 582, 3783-3787.	1.3	71
70	TRPM5-Expressing Solitary Chemosensory Cells Respond to Odorous Irritants. Journal of Neurophysiology, 2008, 99, 1451-1460.	0.9	129
71	The taste transduction channel TRPM5 is a locus for bitterâ€sweet taste interactions. FASEB Journal, 2008, 22, 1343-1355.	0.2	74
72	Involvement of T1R3 in calcium-magnesium taste. Physiological Genomics, 2008, 34, 338-348.	1.0	73

#	Article	IF	CITATIONS
73	Molecular Models of Sweet Taste Receptors Provide Insights into Function. ACS Symposium Series, 2008, , 117-132.	0.5	3
74	Making Sense of the Sweet Taste Receptor. ACS Symposium Series, 2008, , 48-64.	0.5	1
75	Taste Cells of the Gut and Gastrointestinal Chemosensation. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2008, 8, 78-81.	3.4	93
76	1P-240 Hemichannels involved in ATP release from taste cells with action potentials(The 46th Annual) Tj ETQq0	0 0 rgBT /	Overlock 10 1
77	T1R3 and gustducin in gut sense sugars to regulate expression of Na ⁺ -glucose cotransporter 1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15075-15080.	3.3	770
78	Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2471-2476.	3.3	151
79	Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15069-15074.	3.3	878
80	Fat and carbohydrate preferences in mice: the contribution of \hat{l}_{\pm} -gustducin and Trpm5 taste-signaling proteins. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1504-R1513.	0.9	95
81	The Transduction Channel TRPM5 Is Gated by Intracellular Calcium in Taste Cells. Journal of Neuroscience, 2007, 27, 5777-5786.	1.7	174
82	Wnt signaling interacts with Shh to regulate taste papilla development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2253-2258.	3.3	148
83	Intestinal glucose sensing and regulation of intestinal glucose absorption. Biochemical Society Transactions, 2007, 35, 1191-1194.	1.6	76
84	Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO Journal, 2007, 26, 657-667.	3.5	288
85	Perception of sweet taste is important for voluntary alcohol consumption in mice. Genes, Brain and Behavior, 2007, 7, 070321054409001-???.	1.1	69
86	Immuno-localization of vesicular acetylcholine transporter in mouse taste cells and adjacent nerve fibers: indication of acetylcholine release. Cell and Tissue Research, 2007, 330, 17-28.	1.5	30
87	Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biology, 2006, 4, 7.	1.7	212
88	Taste Responses to Sweet Stimuli in Â-Gustducin Knockout and Wild-Type Mice. Chemical Senses, 2006, 31, 573-580.	1.1	43
89	Trpm5 Null Mice Respond to Bitter, Sweet, and Umami Compounds. Chemical Senses, 2006, 31, 253-264.	1.1	289
90	GÎ ³ 13 Interacts with PDZ Domain-containing Proteins. Journal of Biological Chemistry, 2006, 281, 11066-11073.	1.6	29

#	Article	IF	CITATIONS
91	Sucrose and Monosodium Glutamate Taste Thresholds and Discrimination Ability of T1R3 Knockout Mice. Chemical Senses, 2006, 31, 351-357.	1.1	110
92	Umami Responses in Mouse Taste Cells Indicate More than One Receptor. Journal of Neuroscience, 2006, 26, 2227-2234.	1.7	130
93	The Heterodimeric Sweet Taste Receptor has Multiple Potential Ligand Binding Sites. Current Pharmaceutical Design, 2006, 12, 4591-4600.	0.9	155
94	Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature, 2005, 438, 1022-1025.	13.7	408
95	Lactisole Interacts with the Transmembrane Domains of Human T1R3 to Inhibit Sweet Taste. Journal of Biological Chemistry, 2005, 280, 15238-15246.	1.6	262
96	Signal Transduction of Umami Taste: Insights from Knockout Mice. Chemical Senses, 2005, 30, i33-i34.	1.1	9
97	Identification of the Cyclamate Interaction Site within the Transmembrane Domain of the Human Sweet Taste Receptor Subunit T1R3. Journal of Biological Chemistry, 2005, 280, 34296-34305.	1.6	191
98	Contribution of α-Gustducin to Taste-guided Licking Responses of Mice. Chemical Senses, 2005, 30, 299-316.	1.1	95
99	Sensory Systems: Taste Perception. Science Signaling, 2005, 2005, tr20-tr20.	1.6	8
100	Umami Taste Responses Are Mediated by Â-Transducin and Â-Gustducin. Journal of Neuroscience, 2004, 24, 7674-7680.	1.7	139
101	The Cysteine-rich Region of T1R3 Determines Responses to Intensely Sweet Proteins. Journal of Biological Chemistry, 2004, 279, 45068-45075.	1.6	247
102	Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium, 2003, 33, 541-549.	1.1	83
103	G protein subunit $G\hat{I}^313$ is coexpressed with $G\hat{I}^2$ 0, $G\hat{I}^2$ 3, and $G\hat{I}^2$ 4 in retinal ON bipolar cells. Journal of Comparative Neurology, 2003, 455, 1-10.	0.9	114
104	Behavioral Evidence for a Role of Â-Gustducin in Glutamate Taste. Chemical Senses, 2003, 28, 573-579.	1.1	78
105	Detection of Sweet and Umami Taste in the Absence of Taste Receptor T1r3. Science, 2003, 301, 850-853.	6.0	567
106	Insights into Taste Transduction and Coding from Molecular, Biochemical, and Transgenic Studies. ACS Symposium Series, 2003, , 26-44.	0.5	3
107	Role of the G-Protein Subunit α-Gustducin in Taste Cell Responses to Bitter Stimuli. Journal of Neuroscience, 2003, 23, 9947-9952.	1.7	93
108	Electrophysiological Characterization of Voltage-Gated Currents in Defined Taste Cell Types of Mice. Journal of Neuroscience, 2003, 23, 2608-2617.	1.7	130

#	Article	IF	CITATIONS
109	G Proteins Mediating Taste Transduction. , 2003, , 657-661.		1
110	Molecular Physiology of Gustatory Transduction. , 2003, , .		0
111	Partial Rescue of Taste Responses of alpha-Gustducin Null Mice by Transgenic Expression of alpha-Transducin. Chemical Senses, 2002, 27, 719-727.	1.1	54
112	Molecular mechanisms of taste transduction. Pure and Applied Chemistry, 2002, 74, 1125-1133.	0.9	10
113	Molecular Mechanisms of Bitter and Sweet Taste Transduction. Journal of Biological Chemistry, 2002, 277, 1-4.	1.6	380
114	Assaying G Protein–Phosphodiesterase Interactions in Sensory Systems. Methods in Enzymology, 2002, 345, 37-48.	0.4	7
115	Taste Receptor Cell Responses to the Bitter Stimulus Denatonium Involve Ca ²⁺ Influx Via Store-Operated Channels. Journal of Neurophysiology, 2002, 87, 3152-3155.	0.9	66
116	A transient receptor potential channel expressed in taste receptor cells. Nature Neuroscience, 2002, 5, 1169-1176.	7.1	516
117	Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nature Genetics, 2001, 28, 58-63.	9.4	492
118	Making Sense of Taste. Scientific American, 2001, 284, 32-39.	1.0	128
119	Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neuroscience, 2001, 2, 6.	0.8	216
120	Title is missing!. Nature Genetics, 2001, 28, 58-63.	9.4	173
121	Dominant loss of responsiveness to sweet and bitter compounds caused by a single mutation in Â-gustducin. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8868-8873.	3.3	74
122	Ultrastructural localization of gustducin immunoreactivity in microvilli of type II taste cells in the rat. Journal of Comparative Neurology, 2000, 425, 139-151.	0.9	134
123	The molecular physiology of taste transduction. Current Opinion in Neurobiology, 2000, 10, 519-527.	2.0	233
124	Extracellular Matrix-Associated Protein Sc1 Is Not Essential for Mouse Development. Molecular and Cellular Biology, 2000, 20, 656-660.	1.1	43
125	Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha -subunit. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13913-13918.	3.3	329
126	Directing Gene Expression to Gustducin-Positive Taste Receptor Cells. Journal of Neuroscience, 1999, 19, 5802-5809.	1.7	72

#	Article	IF	CITATIONS
127	$G\hat{l}^313$ colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nature Neuroscience, 1999, 2, 1055-1062.	7.1	318
128	An mRNA Encoding a Putative GABAâ€Gated Chloride Channel Is Expressed in the Human Cardiac Conduction System. Journal of Neurochemistry, 1997, 68, 1382-1389.	2.1	33
129	Mechanisms of taste transduction. Current Opinion in Neurobiology, 1996, 6, 506-513.	2.0	175
130	SC1: a marker for astrocytes in the adult rodent brain is upregulated during reactive astrocytosis. Brain Research, 1996, 709, 27-36.	1.1	53
131	Transduction of bitter and sweet taste by gustducin. Nature, 1996, 381, 796-800.	13.7	647
132	Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells. Nature, 1995, 376, 80-85.	13.7	210
133	A cyclic–nucleotide–suppressible conductance activated by transducin in taste cells. Nature, 1995, 376, 85-88.	13.7	128
134	Biochemical analysis of the transducin-phosphodiesterase interaction. Nature Structural Biology, 1994, 1, 771-781.	9.7	32
135	Molecular cloning of G proteins and phosphodiesterases from rat taste cells. Physiology and Behavior, 1994, 56, 1157-1164.	1.0	72
136	Human taste cells express the G protein \hat{l}_{\pm} -gustducin and neuron-specific enolase. Molecular Brain Research, 1994, 22, 193-203.	2.5	47
137	Gustducin and Transducin Are Present in Taste Cells. , 1994, , 60-64.		0
138	The molecular biology of taste transduction. BioEssays, 1993, 15, 645-650.	1.2	43
139	The biochemistry and molecular biology of taste transduction. Current Opinion in Neurobiology, 1993, 3, 526-531.	2.0	40
140	Gustducin and Transducin: A Tale of two G Proteins. Novartis Foundation Symposium, 1993, 179, 186-200.	1.2	16
141	Isolation of a clone which induced expression of the gene encoding the human tumor necrosis factor receptor. Gene, 1992, 111, 215-222.	1.0	12
142	Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature, 1992, 357, 563-569.	13.7	661
143	Cloning muscle isoforms of neural cell adhesion molecule using an episomal shuttle vector. Somatic Cell and Molecular Genetics, 1992, 18, 163-177.	0.7	16
144	α Gustducin: A Taste Cell Specific G Protein Subunit Closely Related to the α Transducins. , 1992, , 9-14.		3

#	Article	IF	CITATIONS
145	HLA class I-restricted human cytotoxic T cells recognize endogenously synthesized hepatitis B virus nucleocapsid antigen Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10445-10449.	3.3	294
146	A highly efficient directional cDNA cloning method utilizing an asymmetrically tailed linker-primer plasmid. Nucleic Acids Research, 1991, 19, 7105-7111.	6.5	2
147	Alignment of the restriction map of mouse adenovirus FL with that of human adenovirus 2. Virology, 1979, 97, 406-414.	1.1	36
148	Mutational analysis of the simian virus 40 replicon: pseudorevertants of mutants with a defective replication origin Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 6128-6131.	3.3	228