Mukesh K Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6975131/publications.pdf

Version: 2024-02-01

41 papers 2,277 citations

257450 24 h-index 289244 40 g-index

42 all docs 42 docs citations

times ranked

42

3537 citing authors

#	Article	IF	CITATIONS
1	Current Progress in Reactive Oxygen Species (ROS)â€Responsive Materials for Biomedical Applications. Advanced Healthcare Materials, 2013, 2, 908-915.	7.6	291
2	Balancing Cationic and Hydrophobic Content of PEGylated siRNA Polyplexes Enhances Endosome Escape, Stability, Blood Circulation Time, and Bioactivity <i>in Vivo</i> . ACS Nano, 2013, 7, 8870-8880.	14.6	255
3	Cell Protective, ABC Triblock Polymer-Based Thermoresponsive Hydrogels with ROS-Triggered Degradation and Drug Release. Journal of the American Chemical Society, 2014, 136, 14896-14902.	13.7	216
4	ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials, 2015, 41, 166-175.	11.4	160
5	Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. Journal of Controlled Release, 2012, 162, 591-598.	9.9	146
6	A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species. Biomaterials, 2014, 35, 3766-3776.	11.4	124
7	Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials, 2015, 38, 97-107.	11.4	111
8	Tunable Delivery of siRNA from a Biodegradable Scaffold to Promote Angiogenesis In Vivo. Advanced Materials, 2014, 26, 607-614.	21.0	106
9	Local Delivery of PHD2 siRNA from ROSâ€Degradable Scaffolds to Promote Diabetic Wound Healing. Advanced Healthcare Materials, 2016, 5, 2751-2757.	7.6	71
10	Sustained local delivery of siRNA from an injectable scaffold. Biomaterials, 2012, 33, 1154-1161.	11.4	66
11	Dual MMP7-Proximity-Activated and Folate Receptor-Targeted Nanoparticles for siRNA Delivery. Biomacromolecules, 2015, 16, 192-201.	5 . 4	53
12	ROS-cleavable proline oligomer crosslinking of polycaprolactone for pro-angiogenic host response. Journal of Materials Chemistry B, 2014, 2, 7109-7113.	5.8	50
13	Thermogelling, ABC Triblock Copolymer Platform for Resorbable Hydrogels with Tunable, Degradationâ€Mediated Drug Release. Advanced Functional Materials, 2017, 27, 1704107.	14.9	49
14	Combinatorial Polymer Electrospun Matrices Promote Physiologically-Relevant Cardiomyogenic Stem Cell Differentiation. PLoS ONE, 2011, 6, e28935.	2.5	48
15	Drug-Free ROS Sponge Polymeric Microspheres Reduce Tissue Damage from Ischemic and Mechanical Injury. ACS Biomaterials Science and Engineering, 2018, 4, 1251-1264.	5. 2	45
16	Enhanced stem cell retention and antioxidative protection with injectable, ROS-degradable PEG hydrogels. Biomaterials, 2020, 263, 120377.	11.4	45
17	Tuning Ligand Density To Optimize Pharmacokinetics of Targeted Nanoparticles for Dual Protection against Tumor-Induced Bone Destruction. ACS Nano, 2020, 14, 311-327.	14.6	39
18	Reactive oxygen species–degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Science Translational Medicine, 2022, 14, eabm6586.	12.4	37

#	Article	IF	CITATIONS
19	Reactive Oxygen Species Shielding Hydrogel for the Delivery of Adherent and Nonadherent Therapeutic Cell Types . Tissue Engineering - Part A, 2017, 23, 1120-1131.	3.1	36
20	Fluorocoxib A loaded nanoparticles enable targeted visualization of cyclooxygenase-2 in inflammation and cancer. Biomaterials, 2016, 92, 71-80.	11.4	35
21	Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications. Acta Biomaterialia, 2015, 24, 53-63.	8.3	32
22	Oligoproline-derived nanocarrier for dual stimuli-responsive gene delivery. Journal of Materials Chemistry B, 2015, 3, 7271-7280.	5.8	32
23	Oxidatively degradable poly(thioketal urethane)/ceramic composite bone cements with bone-like strength. RSC Advances, 2016, 6, 109414-109424.	3.6	29
24	Recent strategies to design vascular theranostic nanoparticles. Nanotheranostics, 2017, 1, 166-177.	5.2	27
25	Systemic delivery of a Gli inhibitor via polymeric nanocarriers inhibits tumor-induced bone disease. Journal of Controlled Release, 2019, 311-312, 257-272.	9.9	22
26	Top-Down Fabricated microPlates for Prolonged, Intra-articular Matrix Metalloproteinase 13 siRNA Nanocarrier Delivery to Reduce Post-traumatic Osteoarthritis. ACS Nano, 2021, 15, 14475-14491.	14.6	21
27	Diflunisalâ€loaded poly(propylene sulfide) nanoparticles decrease S. aureus â€mediated bone destruction during osteomyelitis. Journal of Orthopaedic Research, 2021, 39, 426-437.	2.3	17
28	Tunable Surface Repellency Maintains Stemness and Redox Capacity of Human Mesenchymal Stem Cells. ACS Applied Materials & Distriction (2017), 9, 22994-23006.	8.0	16
29	Development of an N-Cadherin Biofunctionalized Hydrogel to Support the Formation of Synaptically Connected Neural Networks. ACS Biomaterials Science and Engineering, 2020, 6, 5811-5822.	5.2	16
30	Modular polymer design to regulate phenotype and oxidative response of human coronary artery cells for potential stent coating applications. Acta Biomaterialia, 2012, 8, 559-569.	8.3	14
31	Diphenyldiselenide As Novel Non–salt Photoinitiator for Photosensitized Cationic Polymerization of N-Vinyl Carbazole. Macromolecular Symposia, 2006, 240, 186-193.	0.7	11
32	Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications. Acta Biomaterialia, 2016, 34, 73-83.	8.3	11
33	Thermally induced cationic polymerization of glycidyl phenyl ether using novel xanthenyl phosphonium salts. Macromolecular Research, 2009, 17, 221-226.	2.4	7
34	Novel allylic phosphonium salts in free radical accelerated cationic polymerization. Polymer Bulletin, 2009, 62, 271-280.	3.3	7
35	Cationic Polymerization of Epoxides using Novel Xanthenyl Phosphonium Salts as Thermo-latent Initiator. Polymer Bulletin, 2008, 60, 755-763.	3.3	6
36	Novel dibenzocycloheptenyl phosphonium salts as thermolatent initiator in cationic polymerization. Journal of Applied Polymer Science, 2009, 112, 3707-3713.	2.6	6

3

#	Article	IF	CITATIONS
37	Gradient release of cardiac morphogens by photo-responsive polymer micelles for gradient-mediated variation of embryoid body differentiation. Journal of Materials Chemistry B, 2017, 5, 5206-5217.	5.8	6
38	Novel addition-fragmentation agent in cationic photopolymerization. Polymer Bulletin, 2010, 65, 25-34.	3.3	5
39	Copolymerâ€Mediated Cell Aggregation Promotes a Proangiogenic Stem Cell Phenotype In Vitro and In Vivo. Advanced Healthcare Materials, 2016, 5, 2866-2871.	7.6	5
40	Photodegradation of ethylene/propylene/polar monomers, co-, and terpolymers. II. Prepared by Ni catalyst systems. Journal of Applied Polymer Science, 2007, 104, 1783-1791.	2.6	2
41	489. Localized, siRNA-Mediated Silencing of PHD2 to Promote Wound Vascularization. Molecular Therapy, 2015, 23, S194-S195.	8.2	0