Morten Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6975025/publications.pdf

Version: 2024-02-01

60 papers

1,589 citations

331670
21
h-index

345221 36 g-index

66 all docs

66
docs citations

66 times ranked 2404 citing authors

#	Article	IF	CITATIONS
1	RhoA Signaling in Neurodegenerative Diseases. Cells, 2022, 11, 1520.	4.1	38
2	Type I interferonâ€activated microglia are critical for neuromyelitis optica pathology. Glia, 2021, 69, 943-953.	4.9	11
3	Role of RhoA-ROCK signaling in Parkinson's disease. European Journal of Pharmacology, 2021, 894, 173815.	3.5	30
4	Interaction between Parkin and α-Synuclein in PARK2-Mediated Parkinson's Disease. Cells, 2021, 10, 283.	4.1	31
5	Microglia-Secreted Factors Enhance Dopaminergic Differentiation of Tissue- and iPSC-Derived Human Neural Stem Cells. Stem Cell Reports, 2021, 16, 281-294.	4.8	23
6	Establishment of an induced pluripotent stem (iPS) cell line (SDUKIi006-A) from a 21-year old male patient diagnosed with atypical autism disorder. Stem Cell Research, 2021, 51, 102185.	0.7	4
7	Neurodegeneration Induced by Anti-IgLON5 Antibodies Studied in Induced Pluripotent Stem Cell-Derived Human Neurons. Cells, 2021, 10, 837.	4.1	25
8	Long-term treatment with transcranial pulsed electromagnetic fields improves movement speed and elevates cerebrospinal erythropoietin in Parkinson's disease. PLoS ONE, 2021, 16, e0248800.	2.5	5
9	Multiple system atrophy-associated oligodendroglial protein p25 $\hat{l}\pm$ stimulates formation of novel $\hat{l}\pm$ -synuclein strain with enhanced neurodegenerative potential. Acta Neuropathologica, 2021, 142, 87-115.	7.7	55
10	Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism. Stem Cell Reports, 2021, 16, 1510-1526.	4.8	25
11	Polo-like kinase 2 inhibition reduces serine-129 phosphorylation of physiological nuclear alpha-synuclein but not of the aggregated alpha-synuclein. PLoS ONE, 2021, 16, e0252635.	2.5	18
12	Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3. Stem Cell Reports, 2021, 16, 2736-2751.	4.8	23
13	Generation of autism spectrum disorder patient-derived iPSC line SDUKli004-A. Stem Cell Research, 2020, 49, 102038.	0.7	3
14	Derivation of induced pluripotent stem cells (SDUKli003-A) from a 20-year-old male patient diagnosed with Asperger syndrome. Stem Cell Research, 2020, 48, 101974.	0.7	5
15	Generation of human induced pluripotent stem cells (SDUKli002-A) from a 22-year-old male diagnosed with autism spectrum disorder. Stem Cell Research, 2020, 46, 101834.	0.7	8
16	Lysosomal perturbations in human dopaminergic neurons derived from induced pluripotent stem cells with PARK2 mutation. Scientific Reports, 2020, 10, 10278.	3.3	31
17	Autoimmune Encephalitis: Current Knowledge on Subtypes, Disease Mechanisms and Treatment. CNS and Neurological Disorders - Drug Targets, 2020, 19, 584-598.	1.4	23
18	Levodopa Therapy for Parkinson's Disease: History, Current Status and Perspectives. CNS and Neurological Disorders - Drug Targets, 2020, 19, 572-583.	1.4	18

#	Article	IF	CITATIONS
19	Topical Administration of a Soluble TNF Inhibitor Reduces Infarct Volume After Focal Cerebral Ischemia in Mice. Frontiers in Neuroscience, 2019, 13, 781.	2.8	25
20	PARK2 Mutation Causes Metabolic Disturbances and Impaired Survival of Human iPSC-Derived Neurons. Frontiers in Cellular Neuroscience, 2019, 13, 297.	3.7	47
21	TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex. Brain, Behavior, and Immunity, 2019, 82, 279-297.	4.1	26
22	Perturbations in RhoA signalling cause altered migration and impaired neuritogenesis in human iPSC-derived neural cells with PARK2 mutation. Neurobiology of Disease, 2019, 132, 104581.	4.4	32
23	Nonhypoxic pharmacological stabilization of Hypoxia Inducible Factor 1α: Effects on dopaminergic differentiation of human neural stem cells. European Journal of Neuroscience, 2019, 49, 497-509.	2.6	2
24	Activation of Group <scp>II</scp> Metabotropic Glutamate Receptors Increases Proliferation but does not Influence Neuronal Differentiation of a Human Neural Stem Cell Line. Basic and Clinical Pharmacology and Toxicology, 2018, 122, 367-372.	2.5	2
25	A Combination of NT-4/5 and GDNF Is Favorable for Cultured Human Nigral Neural Progenitor Cells. Cell Transplantation, 2018, 27, 648-653.	2.5	4
26	Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells. PLoS ONE, 2018, 13, e0191207.	2.5	20
27	Simultaneous Transplantation of Fetal Ventral Mesencephalic Tissue and Encapsulated Genetically Modified Cells Releasing GDNF in a Hemi-Parkinsonian Rat Model of Parkinson's Disease. Cell Transplantation, 2017, 26, 1572-1581.	2.5	10
28	Comparative Analysis of Spontaneous and Stimulus-Evoked Calcium Transients in Proliferating and Differentiating Human Midbrain-Derived Stem Cells. Stem Cells International, 2017, 2017, 1-14.	2.5	2
29	Specific genes associated with adverse events of methylphenidate use in the pediatric population: A systematic literature review. Journal of Research in Pharmacy Practice, 2017, 6, 65.	0.7	13
30	Simultaneous transplantation of fetal ventral mesencephalic tissue and encapsulated genetically modified cells releasing GDNF in a hemi-parkinsonian rat model of Parkinson's disease. Cell Transplantation, 2017, , .	2.5	0
31	Creation of a library of induced pluripotent stem cells from Parkinsonian patients. Npj Parkinson's Disease, 2016, 2, 16009.	5.3	74
32	Conditional ablation of myeloid TNF increases lesion volume after experimental stroke in mice, possibly via altered ERK1/2 signaling. Scientific Reports, 2016, 6, 29291.	3.3	37
33	Shift of microRNA profile upon orthotopic xenografting of glioblastoma spheroid cultures. Journal of Neuro-Oncology, 2016, 128, 395-404.	2.9	6
34	Sensing of HSV-1 by the cGAS–STING pathway in microglia orchestrates antiviral defence in the CNS. Nature Communications, 2016, 7, 13348.	12.8	245
35	Convection-enhanced delivery of an anti-miR is well-tolerated, preserves anti-miR stability and causes efficient target de-repression: a proof of concept. Journal of Neuro-Oncology, 2016, 126, 47-55.	2.9	25
36	Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model. PLoS ONE, 2016, 11, e0159746.	2.5	23

#	Article	IF	Citations
37	Characterization of Fetal Antigen 1/Delta-Like 1 Homologue Expressing Cells in the Rat Nigrostriatal System: Effects of a Unilateral 6-Hydroxydopamine Lesion. PLoS ONE, 2015, 10, e0116088.	2.5	4
38	Group I Metabotropic Glutamate Receptors: A Potential Target for Regulation of Proliferation and Differentiation of an Immortalized Human Neural Stem Cell Line. Basic and Clinical Pharmacology and Toxicology, 2015, 116, 329-336.	2.5	14
39	Influence of Oxygen Tension on Dopaminergic Differentiation of Human Fetal Stem Cells of Midbrain and Forebrain Origin. PLoS ONE, 2014, 9, e96465.	2.5	17
40	Expression of Trefoil Factor 1 in the Developing and Adult Rat Ventral Mesencephalon. PLoS ONE, 2013, 8, e76592.	2.5	7
41	Characterization of Porcine Ventral Mesencephalic Precursor Cells following Long-Term Propagation in 3D Culture. Stem Cells International, 2012, 2012, 1-13.	2.5	3
42	Cell Therapy for Parkinson's Disease: Status and Perspectives. , 2011, , .		1
43	Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension. Experimental Cell Research, 2011, 317, 1649-1662.	2.6	9
44	Long-Term Propagation of Neural Stem Cells: Focus on Three-Dimensional Culture Systems and Mitogenic Factors. Pancreatic Islet Biology, 2011, , 515-538.	0.3	0
45	Generation and properties of a new human ventral mesencephalic neural stem cell line. Experimental Cell Research, 2009, 315, 1860-1874.	2.6	45
46	Effects of GDNF pretreatment on function and survival of transplanted fetal ventral mesencephalic cells in the 6-OHDA rat model of Parkinson's disease. Brain Research, 2009, 1276, 39-49.	2.2	30
47	A brain slice culture model for studies of endogenous and exogenous precursor cell migration in the rostral migratory stream. Brain Research, 2009, 1295, 1-12.	2.2	12
48	Enhanced dopaminergic differentiation of human neural stem cells by synergistic effect of Bclâ€x _L and reduced oxygen tension. Journal of Neurochemistry, 2009, 110, 1908-1920.	3.9	33
49	Leukemia inhibitory factor favours neurogenic differentiation of long-term propagated human midbrain precursor cells. Neuroscience Letters, 2009, 464, 203-208.	2.1	7
50	Deltaâ€like 1 participates in the specification of ventral midbrain progenitor derived dopaminergic neurons. Journal of Neurochemistry, 2008, 104, 1101-1115.	3.9	45
51	Dopaminergic differentiation of human neural stem cells mediated by coâ€cultured rat striatal brain slices. Journal of Neurochemistry, 2008, 105, 460-470.	3.9	13
52	Functional effect of FGF2- and FGF8-expanded ventral mesencephalic precursor cells in a rat model of Parkinson's disease. Brain Research, 2008, 1218, 13-20.	2.2	25
53	Effect of leukemia inhibitory factor on long-term propagation of precursor cells derived from rat forebrain subventricular zone and ventral mesencephalon. Experimental Neurology, 2008, 211, 301-310.	4.1	5
54	Expansion and characterization of ventral mesencephalic precursor cells: Effect of mitogens and investigation of FA1 as a potential dopaminergic marker. Journal of Neuroscience Research, 2007, 85, 1884-1893.	2.9	18

#	Article	IF	CITATIONS
55	Neural tissue-spheres: A microexplant culture method for propagation of precursor cells from the rat forebrain subventricular zone. Journal of Neuroscience Methods, 2007, 165, 55-63.	2.5	16
56	Neural transdifferentiation of mesenchymal stem cells - a critical review. Apmis, 2005, 113, 831-844.	2.0	185
57	Neurons in the monoaminergic nuclei of the rat and human central nervous system express FA1/dlk. NeuroReport, 2001, 12, 3959-3963.	1.2	55
58	Neural Xenotransplantation: Pretreatment of Porcine Embryonic Nigral Tissue with Anti-Gal Antibodies and Complement is not Toxic for the Dopaminergic Neurons. Cell Transplantation, 2001, 10, 25-30.	2.5	5
59	Improved Survival of Embryonic Porcine Dopaminergic Neurons in Coculture with a Conditionally Immortalized GDNF-Producing Hippocampal Cell Line. Experimental Neurology, 2000, 164, 82-93.	4.1	33
60	Comparison of mesencephalic free-floating tissue culture grafts and cell suspension grafts in the 6-hydroxydopamine-lesioned rat. Experimental Brain Research, 1998, 119, 345-355.	1.5	31