Masayoshi Uefune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6974912/publications.pdf

Version: 2024-02-01

45 723 12 25 papers citations h-index g-index

46 46 46 757
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Intake and transformation to a glycoside of ($\langle i \rangle Z \langle i \rangle$)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7144-7149.	7.1	175
2	Herbivore-Specific, Density-Dependent Induction of Plant Volatiles: Honest or "Cry Wolf―Signals?. PLoS ONE, 2010, 5, e12161.	2.5	125
3	Intraspecies Variation in the Kanzawa Spider Mite Differentially Affects Induced Defensive Response in Lima Bean Plants. Journal of Chemical Ecology, 2006, 32, 2501-2512.	1.8	35
4	Previous infestation of pea aphids <i>Acyrthosiphon pisum</i> on broad bean plants resulted in the increased performance of conspecific nymphs on the plants. Journal of Plant Interactions, 2013, 8, 370-374.	2.1	27
5	Olfactory response of the omnivorous mirid bug Nesidiocoris tenuis to eggplants infested by prey: Specificity in prey developmental stages and prey species. Biological Control, 2015, 91, 47-54.	3.0	25
6	Orientation of the parasitic wasp, Cotesia vestalis (Haliday) (Hymenoptera: Braconidae), to visual and olfactory cues of field mustard flowers, Brassica rapa L. (Brassicaceae), to exploit food sources. Applied Entomology and Zoology, 2010, 45, 369-375.	1.2	23
7	Predation-related odours reduce oviposition in a herbivorous mite. Experimental and Applied Acarology, 2010, 50, 1-8.	1.6	23
8	Silkworms suppress the release of green leaf volatiles by mulberry leaves with an enzyme from their spinnerets. Scientific Reports, 2018, 8, 11942.	3.3	23
9	Hostâ€searching responses to herbivoryâ€associated chemical information and patch use depend on mating status of female solitary parasitoid wasps. Ecological Entomology, 2010, 35, 279-286.	2.2	18
10	Experience of plant infestation by the omnivorous arthropod Nesidiocoris tenuis affects its subsequent responses to prey-infested plant volatiles. BioControl, 2017, 62, 233-242.	2.0	17
11	Parasitic wasp females are attracted to blends of host-induced plant volatiles: do qualitative and quantitative differences in the blend matter?. F1000Research, 2013, 2, 57.	1.6	16
12	Diamondback moth females oviposit more on plants infested by nonâ€parasitised than by parasitised conspecifics. Ecological Entomology, 2008, 33, 565-568.	2.2	15
13	A food-supply device for maintaining Cotesia vestalis, a larval parasitoid of the diamondback moth Plutella xylostella, in greenhouses. BioControl, 2014, 59, 681-688.	2.0	14
14	An omnivorous arthropod, Nesidiocoris tenuis, induces gender-specific plant volatiles to which conspecific males and females respond differently. Arthropod-Plant Interactions, 2018, 12, 495-503.	1.1	14
15	An Apparent Trade-Off between Direct and Signal-Based Induced Indirect Defence against Herbivores in Willow Trees. PLoS ONE, 2012, 7, e51505.	2.5	13
16	Starvation and herbivore-induced plant volatiles affect the color preferences of parasitic wasps. BioControl, 2013, 58, 187-193.	2.0	12
17	Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones. Scientific Reports, 2017, 7, 41508.	3.3	12
18	Effects of Time After Last Herbivory on the Attraction of Corn Plants Infested with Common Arymworms to a Parasitic Wasp Cotesia kariyai. Journal of Chemical Ecology, 2011, 37, 267-272.	1.8	11

#	Article	IF	Citations
19	Prohydrojasmon treatment of lima bean plants reduces the performance of two-spotted spider mites and induces volatiles. Journal of Plant Interactions, 2014, 9, 69-73.	2.1	11
20	Cage evaluation of augmentative biological control of Thrips palmi with Wollastoniella rotunda in winter greenhouses. Entomologia Experimentalis Et Applicata, 2004, 110, 73-77.	1.4	10
21	Response of Wollastoniella rotunda (Hemiptera: Anthocoridae) to volatiles from eggplants infested with its prey Thrips palmi and Tetranychus kanzawai: Prey species and density effects. Biological Control, 2010, 54, 19-22.	3.0	9
22	Parasitoid wasps' exposure to host-infested plant volatiles affects their olfactory cognition of host-infested plants. Animal Cognition, 2018, 21, 79-86.	1.8	9
23	Oviposition Experience of Parasitoid Wasps with Nonhost Larvae Affects their Olfactory and Contact-Behavioral Responses toward Host- and Nonhost-Infested Plants. Journal of Chemical Ecology, 2019, 45, 402-409.	1.8	8
24	Targeting diamondback moths in greenhouses by attracting specific native parasitoids with herbivory-induced plant volatiles. Royal Society Open Science, 2020, 7, 201592.	2.4	8
25	Oviposition of diamondback moth Plutella xylostella females is affected by herbivore-induced plant volatiles that attract the larval parasitoid Cotesia vestalis. Arthropod-Plant Interactions, 2017, 11, 235-239.	1.1	7
26	Biophoton Measurement of Herbivore-Induced Plant Responses Japanese Journal of Applied Entomology and Zoology, 2004, 48, 289-296.	0.1	5
27	Analytical model to predict the number of parasitoids that should be released to control diamondback moth larvae in greenhouses. Journal of Plant Interactions, 2011, 6, 151-154.	2.1	5
28	Uninfested plants and honey enhance the attractiveness of a volatile blend to a parasitoidCotesia vestalis. Journal of Applied Entomology, 2018, 142, 978-984.	1.8	5
29	Suppressed <i>Methionine γ-Lyase</i> Expression Causes Hyperaccumulation of <i>S</i> -Methylmethionine in Soybean Seeds. Plant Physiology, 2020, 183, 943-956.	4.8	5
30	Preferences of parasitic wasps for cabbage plants infested by plural herbivore species. Journal of Plant Interactions, 2011, 6, 167-168.	2.1	4
31	Synchronous Occurrences of the Diamondback Moth (Lepidoptera: Plutellidae) and its Parasitoid Wasp Cotesia vestalis (Hymenoptera: Braconidae) in Greenhouses in a Satoyama Area. Environmental Entomology, 2020, 49, 10-14.	1.4	4
32	Exposure to artificially damaged goldenrod volatiles increases saponins in seeds of field-grown soybean plants. Phytochemistry Letters, 2020, 36, 7-10.	1.2	4
33	Biophoton Emission from Kidney Bean Leaf Infested withTetranychus KanzawaiKishida. Japanese Journal of Applied Physics, 2004, 43, 5646-5651.	1.5	3
34	Spectral Analysis of Ultraweak Chemiluminescence from Kidney Bean Leaf Infested with Tetranychus Kanzawai Kishida. Japanese Journal of Applied Physics, 2005, 44, 1115-1118.	1.5	3
35	Prey Suitability of Thrips palmi (Thysanoptera: Thripidae) and Tetranychus kanzawai (Acari:) Tj ETQq1 1 0.78431	4 rgBT /Ov 0.1	verlock 10 T 3
36	A peckyÂrice-causing stink bug Leptocorisa chinensis escapes from volatiles emitted by excited conspecifics. Journal of Ethology, 2016, 34, 1-7.	0.8	3

#	Article	IF	Citations
37	Effects of Prohydrojasmon on the Number of Infesting Herbivores and Biomass of Field-Grown Japanese Radish Plants. Frontiers in Plant Science, 2021, 12, 695701.	3.6	3
38	Genetic variations in a population of herbivorous mitesTetranychus urticaein the production of the induced volatiles by kidney bean plants. Journal of Plant Interactions, 2007, 2, 89-91.	2.1	2
39	Effects of Plant Species on Development of Wollastoniella rotunda (Hemiptera: Anthocoridae). Japanese Journal of Applied Entomology and Zoology, 2008, 52, 63-67.	0.1	2
40	Herbivore-induced carnivore attractants enhance the residence time of carnivores on a host food plant. Journal of Plant Interactions, 2011, 6, 165-165.	2.1	2
41	Field-Grown Rice Plants Become More Productive When Exposed to Artificially Damaged Weed Volatiles at the Seedling Stage. Frontiers in Plant Science, 2021, 12, 692924.	3.6	2
42	The Use of Synthetic Herbivory-Induced Plant Volatiles That Attract Specialist Parasitoid Wasps, Cotesia vestalis, for Controlling the Incidence of Diamondback Moth Larvae in Open Agricultural Fields. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	2
43	Administration of Aspergillus oryzae suppresses DSS-induced colitis. Food Chemistry Molecular Sciences, 2022, 4, 100063.	2.1	2
44	Aerial (+)-borneol modulates root morphology, auxin signalling and meristematic activity in Arabidopsis roots. Biology Letters, 2022, 18, 20210629.	2.3	2
45	CRISPR/Cas9-mediated disruption of <i>ALLENE OXIDE SYNTHASE</i> results in defective 12-oxo-phytodienoic acid accumulation and reduced defense against spider mite (<i>Tetranychus) Tj ETQq1</i>	. 1,0,7843	314_rgBT /O∨

4