Jens Volkmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6974766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Double-blind cross-over pilot trial protocol to evaluate the safety and preliminary efficacy of long-term adaptive deep brain stimulation in patients with Parkinson's disease. BMJ Open, 2022, 12, e049955.	0.8	9
2	A brain network for deep brain stimulation induced cognitive decline in Parkinson's disease. Brain, 2022, 145, 1410-1421.	3.7	36
3	Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson's disease mice. Brain, Behavior, and Immunity, 2022, 101, 194-210.	2.0	34
4	Deep Brain Stimulation for Arm Tremor: A Randomized Trial Comparing Two Targets. Annals of Neurology, 2022, 91, 585-601.	2.8	20
5	Optimal deep brain stimulation sites and networks for cervical vs. generalized dystonia. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114985119.	3.3	26
6	Quality of Life After Deep Brain Stimulation of Pediatric Patients with Dyskinetic Cerebral Palsy: A Prospective, Singleâ€Arm, Multicenter Study with a Subsequent Randomized Doubleâ€Blind Crossover (<scp>STIM P</scp>). Movement Disorders, 2022, 37, 799-811.	2.2	10
7	Association of Intraventricular Fibrinolysis With Clinical Outcomes in Intracerebral Hemorrhage: An Individual Participant Data Meta-Analysis. Stroke, 2022, 53, 2876-2886.	1.0	11
8	The Deep Brain Stimulation Impairment Scale: A useful complement in assessment of well-being and functioning in DBS-patients – Results from a large multicentre survey in patients with Parkinson's disease. Parkinsonism and Related Disorders, 2022, 99, 8-15.	1.1	0
9	Troubleshooting Gait Disturbances in Parkinson's Disease With Deep Brain Stimulation. Frontiers in Human Neuroscience, 2022, 16, .	1.0	6
10	Extrahepatic portosystemic shunts as an unusual but treatable cause of hyperammonemic encephalopathy in a noncirrhotic patient – a case report. Therapeutic Advances in Neurological Disorders, 2022, 15, 175628642210976.	1.5	1
11	Temporal, spatial and molecular pattern of dopaminergic neurodegeneration in the AAV-A53T α-synuclein rat model of Parkinson's disease. Behavioural Brain Research, 2022, 432, 113968.	1.2	5
12	Age-dependent neurodegeneration and neuroinflammation in a genetic A30P/A53T double-mutated α-synuclein mouse model of Parkinson's disease. Neurobiology of Disease, 2022, 171, 105798.	2.1	8
13	A translational perspective on pathophysiological changes of oscillatory activity in dystonia and parkinsonism. Experimental Neurology, 2022, 355, 114140.	2.0	12
14	Longitudinal Assessment of Rotation Angles after Implantation of Directional Deep Brain Stimulation Leads. Stereotactic and Functional Neurosurgery, 2021, 99, 150-158.	0.8	22
15	<scp><i>EIF2AK2</i></scp> Missense Variants Associated with Early Onset Generalized Dystonia. Annals of Neurology, 2021, 89, 485-497.	2.8	32
16	Technology of deep brain stimulation: current status and future directions. Nature Reviews Neurology, 2021, 17, 75-87.	4.9	341
17	Truncating <scp><i>VPS16</i></scp> Mutations Are Rare in Early Onset Dystonia. Annals of Neurology, 2021, 89, 625-626.	2.8	14
18	Directional Leads for Deep Brain Stimulation: Technical Notes and Experiences. Stereotactic and Functional Neurosurgery, 2021, 99, 1-8.	0.8	8

#	Article	IF	CITATIONS
19	Mesencephalic Electrical Stimulation Reduces Neuroinflammation after Photothrombotic Stroke in Rats by Targeting the Cholinergic Anti-Inflammatory Pathway. International Journal of Molecular Sciences, 2021, 22, 1254.	1.8	10
20	Deep Brain Stimulation for Stroke: Continuous Stimulation of the Pedunculopontine Tegmental Nucleus has no Impact on Skilled Walking in Rats After Photothrombotic Stroke. Current Neurovascular Research, 2021, 17, 636-643.	0.4	1
21	A Recurrent <scp><i>ElF2AK2</i></scp> Missense Variant Causes Autosomalâ€Dominant Isolated Dystonia. Annals of Neurology, 2021, 89, 1257-1258.	2.8	10
22	Impaired reach-to-grasp kinematics in parkinsonian patients relates to dopamine-dependent, subthalamic beta bursts. Npj Parkinson's Disease, 2021, 7, 53.	2.5	14
23	Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy. Neurobiology of Disease, 2021, 153, 105332.	2.1	17
24	Changing Gears – <scp>DBS</scp> For Dopaminergic Desensitization in Parkinson's Disease?. Annals of Neurology, 2021, 90, 699-710.	2.8	22
25	The evolution of dystonia-like movements in TOR1A rats after transient nerve injury is accompanied by dopaminergic dysregulation and abnormal oscillatory activity of a central motor network. Neurobiology of Disease, 2021, 154, 105337.	2.1	18
26	LIPAD (LRRK2/Luebeck International Parkinson's Disease) Study Protocol: Deep Phenotyping of an International Genetic Cohort. Frontiers in Neurology, 2021, 12, 710572.	1.1	3
27	Deep Brain Stimulation for Tremor: Update on Long-Term Outcomes, Target Considerations and Future Directions. Journal of Clinical Medicine, 2021, 10, 3468.	1.0	17
28	Predicting Outcome in a Cohort of Isolated and Combined Dystonia within Probabilistic Brain Mapping. Movement Disorders Clinical Practice, 2021, 8, 1234-1239.	0.8	5
29	Clinical perspectives of adaptive deep brain stimulation. Brain Stimulation, 2021, 14, 1238-1247.	0.7	36
30	Eight-hours conventional versus adaptive deep brain stimulation of the subthalamic nucleus in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 88.	2.5	32
31	Second hit hypothesis in dystonia: Dysfunctional cross talk between neuroplasticity and environment?. Neurobiology of Disease, 2021, 159, 105511.	2.1	14
32	Deep brain stimulation: is it time to change gears by closing the loop?. Journal of Neural Engineering, 2021, 18, 061001.	1.8	13
33	Reduced Programming Time and Strong Symptom Control Even in Chronic Course Through Imaging-Based DBS Programming. Frontiers in Neurology, 2021, 12, 785529.	1.1	23
34	Diagnostic value of skin RT-QuIC in Parkinson's disease: a two-laboratory study. Npj Parkinson's Disease, 2021, 7, 99.	2.5	41
35	DIPS (Dystonia Image-based Programming of Stimulation: a prospective, randomized, double-blind) Tj ETQq1 1	0.784314	rgBT /Overloo
36	Striatal dopaminergic dysregulation and dystonia-like movements induced by sensorimotor stress in a pharmacological mouse model of rapid-onset dystonia-parkinsonism. Experimental Neurology, 2020, 323, 113109.	2.0	8

#	Article	IF	CITATIONS
37	Defining the clinical, molecular and imaging spectrum of adaptor protein complex 4-associated hereditary spastic paraplegia. Brain, 2020, 143, 2929-2944.	3.7	29
38	Parkinson's disease may reduce sensitivity to visual-tactile asynchrony irrespective of dopaminergic treatment: Evidence from the rubber hand illusion. Parkinsonism and Related Disorders, 2020, 78, 100-104.	1.1	2
39	Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurology, The, 2020, 19, 908-918.	4.9	139
40	LSVT-BIG therapy in Parkinson's disease: physiological evidence for proprioceptive recalibration. BMC Neurology, 2020, 20, 276.	0.8	8
41	Differential diagnosis of parkinsonism: a head-to-head comparison of FDG PET and MIBG scintigraphy. Npj Parkinson's Disease, 2020, 6, 39.	2.5	8
42	Gait initiation in progressive supranuclear palsy: brain metabolic correlates. NeuroImage: Clinical, 2020, 28, 102408.	1.4	21
43	A Single Session of Anodal Cerebellar Transcranial Direct Current Stimulation Does Not Induce Facilitation of Locomotor Consolidation in Patients With Multiple Sclerosis. Frontiers in Human Neuroscience, 2020, 14, 588671.	1.0	10
44	Combined subthalamic and nucleus basalis of Meynert deep brain stimulation for Parkinson's disease with dementia (DEMPARK-DBS): protocol of a randomized, sham-controlled trial. Neurological Research and Practice, 2020, 2, 41.	1.0	3
45	Brain metabolic alterations herald falls in patients with Parkinson's disease. Annals of Clinical and Translational Neurology, 2020, 7, 579-583.	1.7	9
46	Gait Initiation in Parkinson's Disease: Impact of Dopamine Depletion and Initial Stance Condition. Frontiers in Bioengineering and Biotechnology, 2020, 8, 137.	2.0	32
47	Relation of infarction location and volume to vertigo in vertebrobasilar stroke. Brain and Behavior, 2020, 10, e01564.	1.0	7
48	A New Stimulation Mode for Deep Brain Stimulation in Parkinson's Disease: Theta Burst Stimulation. Movement Disorders, 2020, 35, 1471-1475.	2.2	20
49	Red flags for a concomitant giant cell arteritis in patients with vertebrobasilar stroke: a cross-sectional study and systematic review. Acta Neurologica Belgica, 2020, 120, 1389-1398.	0.5	10
50	Management of Advanced Therapies in Parkinson's Disease Patients in Times of Humanitarian Crisis: The <scp>COVID</scp> â€19 Experience. Movement Disorders Clinical Practice, 2020, 7, 361-372.	0.8	91
51	Cortical network fingerprints predict deep brain stimulation outcome in dystonia. Movement Disorders, 2019, 34, 1537-1546.	2.2	16
52	Levodopa Modulates Functional Connectivity in the Upper Beta Band Between Subthalamic Nucleus and Muscle Activity in Tonic and Phasic Motor Activity Patterns in Parkinson's Disease. Frontiers in Human Neuroscience, 2019, 13, 223.	1.0	9
53	Freezing of gait in Parkinson's disease reflects a sudden derangement of locomotor network dynamics. Brain, 2019, 142, 2037-2050.	3.7	96
54	Deep Brain Stimulation in Movement Disorders: From Experimental Surgery to Evidenceâ€Based Therapy. Movement Disorders, 2019, 34, 1795-1810.	2.2	137

#	Article	IF	CITATIONS
55	Association of Surgical Hematoma Evacuation vs Conservative Treatment With Functional Outcome in Patients With Cerebellar Intracerebral Hemorrhage. JAMA - Journal of the American Medical Association, 2019, 322, 1392.	3.8	91
56	Symptomatic vs. Asymptomatic 20–40% Internal Carotid Artery Stenosis: Does the Plaque Size Matter?. Frontiers in Neurology, 2019, 10, 960.	1.1	10
57	Evaluation of a programming algorithm for deep brain stimulation in dystonia used in a double-blind, sham-controlled multicenter study. Neurological Research and Practice, 2019, 1, 25.	1.0	7
58	Electrical Stimulation of the Mesencephalic Locomotor Region Has No Impact on Blood–Brain Barrier Alterations after Cerebral Photothrombosis in Rats. International Journal of Molecular Sciences, 2019, 20, 4036.	1.8	0
59	Are Cerebral White Matter Lesions Related to the Presence of Bilateral Internal Carotid Artery Stenosis or to the Length of Stenosis Among Patients With Ischemic Cerebrovascular Events?. Frontiers in Neurology, 2019, 10, 919.	1.1	5
60	Deep brain stimulation: current challenges and future directions. Nature Reviews Neurology, 2019, 15, 148-160.	4.9	721
61	Electrical Stimulation of the Mesencephalic Locomotor Region Attenuates Neuronal Loss and Cytokine Expression in the Perifocal Region of Photothrombotic Stroke in Rats. International Journal of Molecular Sciences, 2019, 20, 2341.	1.8	10
62	Characteristics in Non–Vitamin K Antagonist Oral Anticoagulant–Related Intracerebral Hemorrhage. Stroke, 2019, 50, 1392-1402.	1.0	21
63	Heparin for prophylaxis of venous thromboembolism in intracerebral haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 783-791.	0.9	18
64	Stenosis Length and Degree Interact With the Risk of Cerebrovascular Events Related to Internal Carotid Artery Stenosis. Frontiers in Neurology, 2019, 10, 317.	1.1	18
65	Monitoring subthalamic oscillations for 24 hours in a freely moving Parkinson's disease patient. Movement Disorders, 2019, 34, 757-759.	2.2	28
66	Sit-to-walk performance in Parkinson's disease: A comparison between faller and non-faller patients. Clinical Biomechanics, 2019, 63, 140-146.	0.5	22
67	Rescuing Suboptimal Outcomes of Subthalamic Deep Brain Stimulation in Parkinson Disease by Surgical Lead Revision. Neurosurgery, 2019, 85, E314-E321.	0.6	23
68	Probabilistic mapping of the antidystonic effect of pallidal neurostimulation: a multicentre imaging study. Brain, 2019, 142, 1386-1398.	3.7	105
69	Pallidal neurostimulation versus botulinum toxin injections in the treatment of cervical dystonia: protocol of a randomized, sham-controlled trial (StimTox-CD). Neurological Research and Practice, 2019, 1, 2.	1.0	1
70	Increased Finger-Tapping Related Cerebellar Activation in Cervical Dystonia, Enhanced by Transcranial Stimulation: An Indicator of Compensation?. Frontiers in Neurology, 2019, 10, 231.	1.1	18
71	Development of evidence-based quality indicators for deep brain stimulation in patients with Parkinson's disease and first year experience of implementation of a nation-wide registry. Parkinsonism and Related Disorders, 2019, 60, 3-9.	1.1	7
72	Quality of life predicts outcome of deep brain stimulation in early Parkinson disease. Neurology, 2019, 92, e1109-e1120.	1.5	73

#	Article	IF	CITATIONS
73	Directional Deep Brain Stimulation. Neurotherapeutics, 2019, 16, 100-104.	2.1	81
74	Utility and implications of exome sequencing in earlyâ€onset Parkinson's disease. Movement Disorders, 2019, 34, 133-137.	2.2	36
75	Association of Pallidal Neurostimulation and Outcome Predictors With X-linked Dystonia Parkinsonism. JAMA Neurology, 2019, 76, 211.	4.5	36
76	Management of therapeutic anticoagulation in patients with intracerebral haemorrhage and mechanical heart valves. European Heart Journal, 2018, 39, 1709-1723.	1.0	76
77	Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology, 2018, 90, e971-e976.	1.5	181
78	STN DBS for Advanced Parkinson Disease Simultaneously Alleviates Cluster Headache. Case Reports in Neurology, 2018, 9, 289-292.	0.3	3
79	Behavioural outcomes of subthalamic stimulation and medical therapy versus medical therapy alone for Parkinson's disease with early motor complications (EARLYSTIM trial): secondary analysis of an open-label randomised trial. Lancet Neurology, The, 2018, 17, 223-231.	4.9	105
80	Altered motor plasticity in an acute relapse of multiple sclerosis. European Journal of Neuroscience, 2018, 47, 251-257.	1.2	11
81	Postoperative rehabilitation after deep brain stimulation surgery for movement disorders. Clinical Neurophysiology, 2018, 129, 592-601.	0.7	17
82	Frontal Lobe Connectivity and Network Community Characteristics areÂAssociated with the Outcome of Subthalamic Nucleus Deep Brain Stimulation in Patients with Parkinson's Disease. Brain Topography, 2018, 31, 311-321.	0.8	35
83	Pulse duration settings in subthalamic stimulation for Parkinson's disease. Movement Disorders, 2018, 33, 165-169.	2.2	51
84	Subthalamotomy for Parkinson's disease: back to the future?. Lancet Neurology, The, 2018, 17, 23-24.	4.9	2
85	Dermal Phospho-Alpha-Synuclein Deposition in Patients With Parkinson's Disease and Mutation of the Glucocerebrosidase Gene. Frontiers in Neurology, 2018, 9, 1094.	1.1	16
86	Reply to "The paper that wrote itselfâ€a ghost story― Movement Disorders, 2018, 33, 1510-1511.	2.2	1
87	Neurostimulation in tardive dystonia/dyskinesia: A delayed start, sham stimulation-controlled randomized trial. Brain Stimulation, 2018, 11, 1368-1377.	0.7	35
88	Youngâ€onset multiple system atrophy: Clinical and pathological features. Movement Disorders, 2018, 33, 1099-1107.	2.2	30
89	Anodic versus cathodic neurostimulation of the subthalamic nucleus: A randomized-controlled study of acute clinical effects. Parkinsonism and Related Disorders, 2018, 55, 61-67.	1.1	50
90	Retinal changes in Parkinson's disease and glaucoma. Parkinsonism and Related Disorders, 2018, 56, 41-46.	1.1	34

#	Article	IF	CITATIONS
91	Do We Need to Rethink the Epidemiology and Healthcare Utilization of Parkinson's Disease in Germany?. Frontiers in Neurology, 2018, 9, 500.	1.1	45
92	Phase matters: A role for the subthalamic network during gait. PLoS ONE, 2018, 13, e0198691.	1.1	38
93	Viewpoint and practical recommendations from a movement disorder specialist panel on objective measurement in the clinical management of Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 14.	2.5	70
94	Cortical response to levodopa in Parkinson's disease patients with dyskinesias. European Journal of Neuroscience, 2018, 48, 2362-2373.	1.2	9
95	Consensus for the measurement of the camptocormia angle in the standing patient. Parkinsonism and Related Disorders, 2018, 52, 1-5.	1.1	49
96	Development and validation of the deep brain stimulation impairment scale (DBS-IS). Parkinsonism and Related Disorders, 2017, 36, 69-75.	1.1	9
97	Intraoperative Thresholds for Capsular Stimulation Are Reliable for Chronic Pallidal Deep Brain Stimulation in Dystonia. Stereotactic and Functional Neurosurgery, 2017, 95, 79-85.	0.8	6
98	Effects of DBS in parkinsonian patients depend on the structural integrity of frontal cortex. Scientific Reports, 2017, 7, 43571.	1.6	38
99	Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson's disease. Acta Neuropathologica, 2017, 133, 535-545.	3.9	195
100	Subthalamic nucleus deep brain stimulation is neuroprotective in the A53T αâ€synuclein Parkinson's disease rat model. Annals of Neurology, 2017, 81, 825-836.	2.8	68
101	Thalamic deep brain stimulation for orthostatic tremor: A multicenter international registry. Movement Disorders, 2017, 32, 1240-1244.	2.2	30
102	Connectivity Predicts deep brain stimulation outcome in <scp>P</scp> arkinson disease. Annals of Neurology, 2017, 82, 67-78.	2.8	514
103	The deep brain stimulation impairment scale (DBS-IS) - response to Jahanshahi. Parkinsonism and Related Disorders, 2017, 41, 133-134.	1.1	2
104	Parkinson disease. Nature Reviews Disease Primers, 2017, 3, 17013.	18.1	3,048
105	Reply to "Can STN DBS protect both nigral somata and innervation of the striatum?― Annals of Neurology, 2017, 82, 856-856.	2.8	1
106	Stimulation of the mesencephalic locomotor region for gait recovery after stroke. Annals of Neurology, 2017, 82, 828-840.	2.8	23
107	Development of a head-mounted wireless microstimulator for deep brain stimulation in rats. Journal of Neuroscience Methods, 2017, 291, 249-256.	1.3	18
108	Directional leads for deep brain stimulation: Opportunities and challenges. Movement Disorders, 2017, 32, 1371-1375.	2.2	81

#	Article	IF	CITATIONS
109	Stereological Estimation of Dopaminergic Neuron Number in the Mouse Substantia Nigra Using the Optical Fractionator and Standard Microscopy Equipment. Journal of Visualized Experiments, 2017, , .	0.2	27
110	Pallidal DBS for dystonia in the age of personalized medicine. Parkinsonism and Related Disorders, 2017, 45, 101-102.	1.1	3
111	Cholinergic activity and levodopaâ€induced dyskinesia: a multitracer molecular imaging study. Annals of Clinical and Translational Neurology, 2017, 4, 632-639.	1.7	15
112	Causes of failure of pallidal deep brain stimulation in cases with pre-operative diagnosis of isolated dystonia. Parkinsonism and Related Disorders, 2017, 43, 38-48.	1.1	51
113	Reply: Clinical approach to delayed-onset cerebellar impairment following deep brain stimulation for tremor. Brain, 2017, 140, e28-e28.	3.7	5
114	Opposite effects of l -dopa and DBS-STN on saccadic eye movements in advanced Parkinson's disease. Neurologia I Neurochirurgia Polska, 2017, 51, 354-360.	0.6	10
115	Deep Brain Stimulation for the Dystonias: Evidence, Knowledge Gaps, and Practical Considerations. Movement Disorders Clinical Practice, 2017, 4, 486-494.	0.8	31
116	Targeting of the Subthalamic Nucleus for Deep Brain Stimulation: A Survey Among Parkinson Disease Specialists. World Neurosurgery, 2017, 99, 41-46.	0.7	45
117	ALS and MMN mimics in patients with BSCL2 mutations: the expanding clinical spectrum of SPG17 hereditary spastic paraplegia. Journal of Neurology, 2017, 264, 11-20.	1.8	15
118	Innovations in deep brain stimulation methodology. Movement Disorders, 2017, 32, 11-19.	2.2	121
119	Adult-Onset Niemann–Pick Disease Type C: Rapid Treatment Initiation Advised but Early Diagnosis Remains Difficult. Frontiers in Neurology, 2017, 8, 108.	1.1	9
120	Movement-Related Activity of Human Subthalamic Neurons during a Reach-to-Grasp Task. Frontiers in Human Neuroscience, 2017, 11, 436.	1.0	15
121	Unmet Needs in the Management of Cervical Dystonia. Frontiers in Neurology, 2016, 7, 165.	1.1	20
122	Striatal Dopaminergic Innervation Regulates Subthalamic Beta-Oscillations and Cortical-Subcortical Coupling during Movements: Preliminary Evidence in Subjects with Parkinson's Disease. Frontiers in Human Neuroscience, 2016, 10, 611.	1.0	45
123	Successful Treatment of Blepharospasm by Pallidal Neurostimulation. Movement Disorders Clinical Practice, 2016, 3, 409-411.	0.8	9
124	Split-belt locomotion in Parkinson's disease links asymmetry, dyscoordination and sequence effect. Gait and Posture, 2016, 48, 6-12.	0.6	41
125	Progressive gait ataxia following deep brain stimulation for essential tremor: adverse effect or lack of efficacy?. Brain, 2016, 139, 2948-2956.	3.7	119
126	Directional deep brain stimulation of the subthalamic nucleus: A pilot study using a novel neurostimulation device. Movement Disorders, 2016, 31, 1240-1243.	2.2	199

#	Article	IF	CITATIONS
127	Distinctive neuronal firing patterns in subterritories of the subthalamic nucleus. Clinical Neurophysiology, 2016, 127, 3387-3393.	0.7	17
128	Idiopathic delayed-onset edema surrounding deep brain stimulation leads: Insights from a case series and systematic literature review. Parkinsonism and Related Disorders, 2016, 32, 108-115.	1.1	22
129	A Novel Approach to Assess Motor Outcome of Deep Brain Stimulation Effects in the Hemiparkinsonian Rat: Staircase and Cylinder Test. Journal of Visualized Experiments, 2016, , .	0.2	6
130	Tor1a+/- mice develop dystonia-like movements via a striatal dopaminergic dysregulation triggered by peripheral nerve injury. Acta Neuropathologica Communications, 2016, 4, 108.	2.4	27
131	Skin biopsies in the differential diagnosis of parkinsonism: are we ready for simplified protocols?. Brain, 2016, 139, e5-e5.	3.7	20
132	Susceptibility Sensitive Magnetic Resonance Imaging Displays Pallidofugal and Striatonigral Fiber Tracts. Operative Neurosurgery, 2016, 12, 330-338.	0.4	10
133	Reply to comment on: Short pulse width widens the therapeutic window of subthalamic neurostimulation. Annals of Clinical and Translational Neurology, 2015, 2, 986-986.	1.7	4
134	Microelectrode Guided Implantation of Electrodes into the Subthalamic Nucleus of Rats for Long-term Deep Brain Stimulation. Journal of Visualized Experiments, 2015, , .	0.2	7
135	Distinctive distribution of phospho-alpha-synuclein in dermal nerves in multiple system atrophy. Movement Disorders, 2015, 30, 1688-1692.	2.2	91
136	Full Parkinsonian Triad Induced by Pallidal Highâ€Frequency Stimulation in Cervical Dystonia. Movement Disorders Clinical Practice, 2015, 2, 99-101.	0.8	13
137	Deep Brain Stimulation in Neurological and Psychiatric Disorders. Deutsches Ärzteblatt International, 2015, 112, 519-26.	0.6	30
138	Cognitive outcome of pallidal deep brain stimulation for primary cervical dystonia: One year follow up results of a prospective multicenter trial. Parkinsonism and Related Disorders, 2015, 21, 976-980.	1.1	24
139	Euro <scp>I</scp> nf: <scp>A</scp> <scp>M</scp> ulticenter <scp>C</scp> omparative <scp>O</scp> bservational <scp>S</scp> tudy of <scp>A</scp> pomorphine and <scp>L</scp> evodopa <scp>I</scp> nfusion in <scp>P</scp> arkinson's <scp>D</scp> isease. Movement Disorders, 2015, 30, 510-516.	2.2	203
140	Short- and long-term outcome of chronic pallidal neurostimulation in monogenic isolated dystonia. Neurology, 2015, 84, 895-903.	1.5	117
141	Anticoagulant Reversal, Blood Pressure Levels, and Anticoagulant Resumption in Patients With Anticoagulation-Related Intracerebral Hemorrhage. JAMA - Journal of the American Medical Association, 2015, 313, 824.	3.8	447
142	Short pulse width widens the therapeutic window of subthalamic neurostimulation. Annals of Clinical and Translational Neurology, 2015, 2, 427-432.	1.7	127
143	Selective changes of ocular vestibular myogenic potentials in Parkinson's disease. Movement Disorders, 2015, 30, 584-589.	2.2	29
144	Subthalamic nucleus stimulation improves Parkinsonian gait via brainstem locomotor centers. Movement Disorders, 2015, 30, 1121-1125.	2.2	30

#	Article	IF	CITATIONS
145	The medical treatment of patients with Parkinson's disease receiving subthalamic neurostimulation. Parkinsonism and Related Disorders, 2015, 21, 555-560.	1.1	12
146	Lymphocytes reduce nigrostriatal deficits in the 6-hydroxydopamine mouse model of Parkinson's disease. Journal of Neural Transmission, 2015, 122, 1633-1643.	1.4	15
147	Gait Initiation in Children with Rett Syndrome. PLoS ONE, 2014, 9, e92736.	1.1	30
148	Nicotinic Acetylcholine Receptor Density in Cognitively Intact Subjects at an Early Stage of Parkinsonââ,¬â,,¢s Disease. Frontiers in Aging Neuroscience, 2014, 6, 213.	1.7	21
149	Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor. Brain, 2014, 137, 109-121.	3.7	156
150	The Pirouette Test to Evaluate Asymmetry in Parkinsonian Gait Freezing. Movement Disorders Clinical Practice, 2014, 1, 136-138.	0.8	10
151	Coordinated reset neuromodulation for Parkinson's disease: Proofâ€ofâ€concept study. Movement Disorders, 2014, 29, 1679-1684.	2.2	198
152	Motor outcome of dystonic camptocormia treated with pallidal neurostimulation. Parkinsonism and Related Disorders, 2014, 20, 176-179.	1.1	26
153	Pallidal Deep Brain Stimulation in <scp>DYT</scp> 6: Significant Longâ€Term Improvement of Dystonia and Disability. Movement Disorders Clinical Practice, 2014, 1, 118-120.	0.8	7
154	Pallidal neurostimulation in patients with medication-refractory cervical dystonia: a randomised, sham-controlled trial. Lancet Neurology, The, 2014, 13, 875-884.	4.9	281
155	Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain, 2014, 137, 2480-2492.	3.7	169
156	The impact of age and disease duration on the long term outcome of neurostimulation of the subthalamic nucleus. Parkinsonism and Related Disorders, 2014, 20, 47-52.	1.1	33
157	Subthalamic deep brain stimulation restores automatic response activation and increases susceptibility to impulsive behavior in patients with Parkinson's disease. Brain and Cognition, 2014, 87, 16-21.	0.8	14
158	Cutaneous neuropathy in Parkinson's disease: a window into brain pathology. Acta Neuropathologica, 2014, 128, 99-109.	3.9	203
159	Dystonia rating scales: Critique and recommendations. Movement Disorders, 2013, 28, 874-883.	2.2	150
160	Selecting deep brain stimulation or infusion therapies in advanced Parkinson's disease: an evidence-based review. Journal of Neurology, 2013, 260, 2701-2714.	1.8	128
161	The central oscillatory network of orthostatic tremor. Movement Disorders, 2013, 28, 1424-1430.	2.2	41
162	Deep brain stimulation for gait and postural symptoms in Parkinson's disease. Movement Disorders, 2013, 28, 1609-1615.	2.2	95

#	Article	IF	CITATIONS
163	Postoperative management of deep brain stimulation in Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 116, 129-146.	1.0	32
164	Commentary. Movement Disorders, 2013, 28, 1642-1642.	2.2	0
165	Botulinum neurotoxin treatment improves force regulation in writer's cramp. Parkinsonism and Related Disorders, 2013, 19, 611-616.	1.1	7
166	Costâ€effectiveness of deep brain stimulation in patients with Parkinson's disease. Movement Disorders, 2013, 28, 763-771.	2.2	79
167	Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson's disease: results from a randomized trial. Brain, 2013, 136, 2109-2119.	3.7	171
168	Deep Brain Stimulation. , 2013, , 445-461.		2
169	Identification and functional analysis of novel THAP1 mutations. European Journal of Human Genetics, 2012, 20, 171-175.	1.4	48
170	Factors associated with neuropsychiatric side effects after STN-DBS in Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, S168-S170.	1.1	47
171	Lower limb joints kinematics in essential tremor and the effect of thalamic stimulation. Gait and Posture, 2012, 36, 187-193.	0.6	25
172	Pallidal deep brain stimulation in patients with primary generalised or segmental dystonia: 5-year follow-up of a randomised trial. Lancet Neurology, The, 2012, 11, 1029-1038.	4.9	329
173	The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies. PLoS ONE, 2012, 7, e51464.	1.1	17
174	Stimulation site within the MRIâ€defined STN predicts postoperative motor outcome. Movement Disorders, 2012, 27, 874-879.	2.2	139
175	Differential effect of dopa and subthalamic stimulation on vestibular activity in Parkinson's disease. Movement Disorders, 2012, 27, 1268-1275.	2.2	40
176	Deep brain stimulation in Parkinson's disease: opening up the race towards better technology. Lancet Neurology, The, 2012, 11, 121-123.	4.9	3
177	The atypical subthalamic nucleus—An anatomical variant relevant for stereotactic targeting. Movement Disorders, 2012, 27, 544-548.	2.2	5
178	Neuropsychiatric Side Effects of Deep Brain Stimulation in Parkinson's Disease. , 2012, , 159-173.		1
179	Negative impact of borderline global cognitive scores on quality of life after subthalamic nucleus stimulation in Parkinson's disease. Journal of the Neurological Sciences, 2011, 310, 261-266.	0.3	52
180	Subthalamic deep brain stimulation increases pallidal firing rate and regularity. Experimental Neurology, 2011, 229, 517-521.	2.0	51

#	Article	IF	CITATIONS
181	Axonal failure during high frequency stimulation of rat subthalamic nucleus. Journal of Physiology, 2011, 589, 2781-2793.	1.3	63
182	Factors predicting protracted improvement after pallidal DBS for primary dystonia: the role of age and disease duration. Journal of Neurology, 2011, 258, 1469-1476.	1.8	101
183	Longâ€Term management of DBS in dystonia: Response to stimulation, adverse events, battery changes, and special considerations. Movement Disorders, 2011, 26, S54-62.	2.2	80
184	Longâ€ŧerm clinical outcome in meige syndrome treated with internal pallidum deep brain stimulation. Movement Disorders, 2011, 26, 691-698.	2.2	120
185	Modulation of gait coordination by subthalamic stimulation improves freezing of gait. Movement Disorders, 2011, 26, 844-851.	2.2	94
186	Successful deep brain stimulation in a case of posttraumatic tremor and hemiparkinsonism. Movement Disorders, 2011, 26, 1954-1955.	2.2	18
187	No evidence for <i>THAP1</i> DYT6 variants as disease modifiers in DYT1 dystonia. Movement Disorders, 2011, 26, 2136-2137.	2.2	10
188	Levetiracetam in primary orthostatic tremor: A doubleâ€blind placeboâ€controlled crossover study. Movement Disorders, 2011, 26, 2431-2434.	2.2	22
189	ls improvement in the quality of life after subthalamic nucleus stimulation in Parkinson's disease predictable?. Movement Disorders, 2011, 26, 2516-2521.	2.2	71
190	The Wilson films — Parkinson's disease. Movement Disorders, 2011, 26, 2475-2476.	2.2	1
191	Deep Brain Stimulation for Parkinson Disease. Archives of Neurology, 2011, 68, 165.	4.9	776
192	A role for locus coeruleus in Parkinson tremor. Frontiers in Human Neuroscience, 2011, 5, 179.	1.0	51
193	Secondary failure after tenÂyears of pallidal neurostimulation in a patient with advanced Parkinson's disease. Journal of Neural Transmission, 2010, 117, 349-351.	1.4	19
194	Longâ€ŧerm results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease. Movement Disorders, 2010, 25, 578-586.	2.2	382
195	Camptocormia in idiopathic Parkinson's disease: A focal myopathy of the paravertebral muscles. Movement Disorders, 2010, 25, 542-551.	2.2	108
196	Risk factors for executive dysfunction after subthalamic nucleus stimulation in Parkinson's disease. Movement Disorders, 2010, 25, 1583-1589.	2.2	68
197	Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nature Reviews Neurology, 2010, 6, 487-498.	4.9	196
198	Gait ataxia in essential tremor is differentially modulated by thalamic stimulation. Brain, 2010, 133, 3635-3648.	3.7	117

#	Article	IF	CITATIONS
199	Inducing Homeostatic-Like Plasticity in Human Motor Cortex Through Converging Corticocortical Inputs. Journal of Neurophysiology, 2009, 102, 3180-3190.	0.9	54
200	Effect of Cabergoline on Parkinsonian Tremor Assessed by Long-Term Actigraphy. European Neurology, 2009, 61, 149-153.	0.6	14
201	Longâ€ŧerm effects of pallidal or subthalamic deep brain stimulation on quality of life in Parkinson's disease. Movement Disorders, 2009, 24, 1154-1161.	2.2	140
202	Influence of subthalamic deep brain stimulation versus levodopa on motor perseverations in Parkinson's disease. Movement Disorders, 2009, 24, 1206-1210.	2.2	8
203	<i>ATP13A2</i> variants in earlyâ€onset Parkinson's disease patients and controls. Movement Disorders, 2009, 24, 2104-2111.	2.2	62
204	Acquired stuttering after pallidal deep brain stimulation for dystonia. Journal of Neural Transmission, 2009, 116, 167-169.	1.4	43
205	Internal carotid artery dissection and stroke after SCUBA diving: a case report and review of the literature. Journal of Neurology, 2009, 256, 1916-1919.	1.8	19
206	Cortical correlates of the basic and first harmonic frequency of Parkinsonian tremor. Clinical Neurophysiology, 2009, 120, 1866-1872.	0.7	55
207	Proprioception and Motor Control in Parkinson's Disease. Journal of Motor Behavior, 2009, 41, 543-552.	0.5	248
208	Deep brain stimulation in Parkinson's disease following fetal nigral transplantation. Movement Disorders, 2008, 23, 1293-1296.	2.2	42
209	Pallidal deep brain stimulation improves quality of life in segmental and generalized dystonia: Results from a prospective, randomized shamâ€controlled trial. Movement Disorders, 2008, 23, 131-134.	2.2	131
210	Highâ€frequency stimulation of the subthalamic nucleus increases pallidal neuronal firing rate in a patient with Parkinson's disease. Movement Disorders, 2008, 23, 1945-1947.	2.2	7
211	Subthalamic nucleus stimulation restores corticospinal facilitation in Parkinson's disease. Movement Disorders, 2008, 23, 2210-2215.	2.2	26
212	Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study. Lancet Neurology, The, 2008, 7, 605-614.	4.9	582
213	Surgery for Parkinson's Disease. , 2008, , 121-143.		2
214	Deep Brain Stimulation or Duodenal Levodopa/Carbidopa Infusion: <i>Choosing the Right Therapy for Individual Patients</i> . CNS Spectrums, 2008, 13, 8-10.	0.7	10
215	Intra-operative Microrecording and Stimulation. , 2008, , 111-134.		2
216	Improved sensory gating of urinary bladder afferents in Parkinson's disease following subthalamic stimulation. Brain, 2007, 131, 132-145.	3.7	121

#	Article	IF	CITATIONS
217	Kinematic analysis of thalamic versus subthalamic neurostimulation in postural and intention tremor. Brain, 2007, 130, 1608-1625.	3.7	217
218	Update on surgery for Parkinson??s disease. Current Opinion in Internal Medicine, 2007, 6, 511-515.	1.5	15
219	A Randomized Trial of Deep-Brain Stimulation for Parkinson's Disease. New England Journal of Medicine, 2006, 355, 896-908.	13.9	2,577
220	Differential Effects of L-Dopa and Subthalamic Stimulation on Depressive Symptoms and Hedonic Tone in Parkinson's Disease. Journal of Neuropsychiatry and Clinical Neurosciences, 2006, 18, 397-401.	0.9	47
221	Basic algorithms for the programming of deep brain stimulation in Parkinson's disease. Movement Disorders, 2006, 21, S284-S289.	2.2	395
222	The impact of normal aging and Parkinson's disease on response preparation in task-switching behavior. Brain Research, 2006, 1114, 173-182.	1.1	27
223	Patients with Parkinson's disease learn to control complex systems—an indication for intact implicit cognitive skill learning. Neuropsychologia, 2006, 44, 2445-2451.	0.7	31
224	Deep brain stimulation: Postoperative issues. Movement Disorders, 2006, 21, S219-S237.	2.2	276
225	RecurrentLRRK2 (Park8) mutations in early-onset Parkinson's disease. Movement Disorders, 2006, 21, 1506-1510.	2.2	46
226	Long-term benefit to pallidal deep brain stimulation in a case of dystonia secondary to pantothenate kinase-associated neurodegeneration. Movement Disorders, 2006, 21, 2255-2257.	2.2	107
227	Subthalamic stimulation modulates cortical control of urinary bladder in Parkinson's disease. Brain, 2006, 129, 3366-3375.	3.7	141
228	Pallidal Deep-Brain Stimulation in Primary Generalized or Segmental Dystonia. New England Journal of Medicine, 2006, 355, 1978-1990.	13.9	980
229	Effects of subthalamic nucleus stimulation and levodopa on the autonomic nervous system in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 742-745.	0.9	63
230	Deep Brain Stimulation for Parkinson's Disease and Other Movement Disorders : Long-term Outcome and Mechanism of Action(Luncheon Seminar Special Feature 2 Deep Brain Stimulation (DBS):Viewpoint) Tj ETQq	0	[Qverlock 10
231	Praying-induced oromandibular dystonia. Movement Disorders, 2005, 20, 385-386.	2.2	55
232	Premutations in theFMR1 gene as a modifying factor inParkin-associated Parkinson's disease?. Movement Disorders, 2005, 20, 1060-1062.	2.2	30
233	Deep brain stimulation in late stage Parkinson?s disease: a retrospective cost analysis in Germany. Journal of Neurology, 2005, 252, 218-223.	1.8	64
234	Effect of subthalamic deep brain stimulation on the function of the urinary bladder. Annals of Neurology, 2004, 55, 118-120.	2.8	141

#	Article	IF	CITATIONS
235	Long-term results of bilateral pallidal stimulation in Parkinson's disease. Annals of Neurology, 2004, 55, 871-875.	2.8	232
236	Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease. Movement Disorders, 2004, 19, 1050-1054.	2.2	235
237	Pallidal Stimulation for Dystonia. Neurosurgery, 2004, 55, 1361-1370.	0.6	195
238	Deep Brain Stimulation for the Treatment of Parkinson's Disease. Journal of Clinical Neurophysiology, 2004, 21, 6-17.	0.9	258
239	Two-year follow-up of subthalamic deep brain stimulation in Parkinson's disease. Movement Disorders, 2003, 18, 1332-1337.	2.2	258
240	Chapter 24 Clinical neurophysiology and pathophysiology of Parkinsonian tremor. Handbook of Clinical Neurophysiology, 2003, 1, 377-396.	0.0	10
241	The cerebral oscillatory network of parkinsonian resting tremor. Brain, 2003, 126, 199-212.	3.7	494
242	Deep Brain Stimulation of the Subthalamic Nucleus Enhances Emotional Processing in Parkinson Disease. Archives of General Psychiatry, 2003, 60, 296.	13.8	141
243	Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. Journal of Neurosurgery, 2002, 96, 269-279.	0.9	274
244	Deep brain stimulation for dystonia: Patient selection and evaluation. Movement Disorders, 2002, 17, S112-S115.	2.2	94
245	Introduction to the programming of deep brain stimulators. Movement Disorders, 2002, 17, S181-S187.	2.2	331
246	Visual Hallucinations in Recovery From Cortical Blindness. Archives of Neurology, 2000, 57, 561.	4.9	90
247	DETECTION OF PHASE LOCKING FROM NOISY DATA: APPLICATION TO MAGNETOENCEPHALOGRAPHY. , 2000, , .		11
248	Different cortical organization of visceral and somatic sensation in humans. European Journal of Neuroscience, 1999, 11, 305-315.	1.2	73
249	Oscillations of the Human Sensorimotor System as Revealed by Magnetoencephalography. Movement Disorders, 1998, 13, 73-76.	2.2	72
250	Dichotic listening: What does it measure?. Neuropsychologia, 1992, 30, 941-950.	0.7	40
251	Surgical treatment and behavior. , 0, , 230-243.		0
252	Deep Brain Stimulation for Isolated Focal and Segmental Dystonia. , 0, , 356-359.		0

#	Article	IF	CITATIONS
253	Forschung: Parkinson-Krankheit – Hautbiopsie unterstützt Diagnose in Prodromalphase. , 0, , .		0