Gourab Dey

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6974727/gourab-dey-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

163 8 10 11 h-index g-index citations papers 185 6.5 11 2.55 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
10	A Novel Near Infrared Spectroscopy Based Device for Albumin Estimation. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2020 , 2020, 6123-6126	0.9	1
9	Molecular Scale Optimum Hydrophobicity To Establish an Enhanced Probe-Protein Interaction: Near-Infrared Imaging of Albumin Biosynthesis Modulation <i>ACS Applied Bio Materials</i> , 2019 , 2, 3372-33	3 <i>7</i> 19 ¹	2
8	Preferential intermolecular interactions lead to chiral recognition: enantioselective gel formation and collapse. <i>Chemical Communications</i> , 2018 , 54, 11407-11410	5.8	14
7	Blue Luminescent Organic Light Emitting Diode Devices of a New Class of Star-Shaped Columnar Mesogens Exhibiting Driven Supergelation. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 23659-23674	3.8	20
6	Renal Clearable New NIR Probe: Precise Quantification of Albumin in Biofluids and Fatty Liver Disease State Identification through Tissue Specific High Contrast Imaging in Vivo. <i>Analytical Chemistry</i> , 2017 , 89, 10343-10352	7.8	21
5	Optical signaling in biofluids: a nondenaturing photostable molecular probe for serum albumins. <i>Chemical Communications</i> , 2016 , 52, 1887-90	5.8	41
4	Sub-Picomolar Recognition of Cr3+ through Bioinspired OrganicIhorganic Ensemble Utilization. <i>ACS Sensors</i> , 2016 , 1, 663-669	9.2	17
3	Selenium Incorporated Cationic Organochalcogen: Live Cell Compatible and Highly Photostable Molecular Stain for Imaging and Localization of Intracellular DNA. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 10690-9	9.5	13
2	Functional molecular lumino-materials to probe serum albumins: solid phase selective staining through noncovalent fluorescent labeling. <i>ACS Applied Materials & Description of the Action of the Acti</i>	9.5	18
1	Cysteamine-based cell-permeable Zn(2+)-specific molecular bioimaging materials: from animal to plant cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 11730-40	9.5	15