

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6974492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Microfluidic Method Utilizing a Hydrofoil Structure to Improve Circulating Tumor Cell Enrichment: Design and Analytical Validation. Micromachines, 2020, 11, 981.	2.9	4
2	Enhancement of the Start-Up Time for Microliter-Scale Microbial Fuel Cells (µMFCs) via the Surface Modification of Gold Electrodes. Micromachines, 2020, 11, 703.	2.9	3
3	Optimization of AA-Battery Sized Electromagnetic Energy Harvesters: Reducing the Resonance Frequency Using a Non-Magnetic Inertial Mass. IEEE Sensors Journal, 2018, 18, 4509-4516.	4.7	14
4	A second harmonic based resonance characterization method for MEMS electrostatic resonators. Sensors and Actuators A: Physical, 2018, 274, 220-230.	4.1	5
5	WirelessEnergySim: A Discrete Event Simulator for an Energy-Neutral Operation of IoT Nodes. , 2018, , .		2
6	Highly Integrated 3 V Supply Electronics for Electromagnetic Energy Harvesters With Minimum 0.4 V \$_{mathbf{peak}}\$ Input. IEEE Transactions on Industrial Electronics, 2017, 64, 5460-5467.	7.9	16
7	Threshold Compensated UHF Rectifier With Local Self-Calibrator. IEEE Microwave and Wireless Components Letters, 2017, 27, 575-577.	3.2	12
8	Analysis and Elimination of the Capacitive Feedthrough Current on Electrostatically Actuated and Sensed Resonance-Based MEMS Sensors. Journal of Microelectromechanical Systems, 2017, 26, 1272-1278.	2.5	8
9	A parylene bonding based fabrication method for gravimetric resonant based mass sensors. , 2017, , .		Ο
10	An adaptable interface circuit for low power MEMS piezoelectric energy harvesters with multi-stage energy extraction. , 2017, , .		2
11	Neural stimulation interface with ultra-low power signal conditioning circuit for fully-implantable cochlear implants. , 2017, , .		2
12	Performance Enhancement Of Mems-Based Microbial Fuel Cells (μMFC) For Microscale Power Generation. Journal of Physics: Conference Series, 2016, 773, 012018.	0.4	1
13	Modelling and efficiency optimisation of UHF Dickson rectifiers. IET Circuits, Devices and Systems, 2016, 10, 504-513.	1.4	5
14	Wearable battery-less wireless sensor network with electromagnetic energy harvesting system. Sensors and Actuators A: Physical, 2016, 249, 77-84.	4.1	46
15	Optimized Electromagnetic Harvester with a Non-Magnetic Inertial Mass. Procedia Engineering, 2015, 120, 337-340.	1.2	8
16	Stage optimization in regulated step-up for low voltage electromagnetic energy harvesters. , 2015, , .		1
17	Auto-calibrating threshold compensation technique for RF energy harvesters. , 2015, , .		8
18	A Fully Integrated and Battery-Free Interface for Low-Voltage Electromagnetic Energy Harvesters. IEEE Transactions on Power Electronics, 2015, 30, 3712-3719.	7.9	31

Özge Zorlu

#	Article	IF	CITATIONS
19	Reconfigurable Nested Ring-Split Ring Transmitarray Unit Cell Employing the Element Rotation Method by Microfluidics. IEEE Transactions on Antennas and Propagation, 2015, 63, 1163-1167.	5.1	43
20	A self-powered and efficient rectifier for electromagnetic energy harvesters. , 2014, , .		3
21	Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System. Energies, 2014, 7, 6323-6339.	3.1	26
22	A reconfigurable nested ring-split ring transmitarray unit cell by microfluidic technology. , 2014, , .		4
23	Microfluidic reconfigurable nested split ring-regular ring transmitarray unit cell. , 2014, , .		0
24	A parylene coating based room temperature wafer-level attachment method for MEMS integration with zero applied force. Sensors and Actuators A: Physical, 2014, 215, 1-7.	4.1	1
25	A MEMS-based energy harvester for generating energy from non-resonant environmental vibrations. Sensors and Actuators A: Physical, 2013, 202, 124-134.	4.1	36
26	A room temperature, zero force, wafer-level attachment method for MEMS integration. , 2013, , .		1
27	An electromagnetic energy harvester for low frequency and low-g vibrations with a modified frequency up conversion method. , 2013, , .		10
28	A 180 nm self-powered rectifier circuit for electromagnetic energy harvesters. , 2013, , .		0
29	Stimulating auditory nerve with MEMS harvesters for fully implantable and self-powered cochlear implants. , 2013, , .		18
30	An efficient integrated interface electronics for electromagnetic energy harvesting from low voltage sources. , 2013, , .		7
31	Fully Self-Powered Electromagnetic Energy Harvesting System With Highly Efficient Dual Rail Output. IEEE Sensors Journal, 2012, 12, 2287-2298.	4.7	66
32	A self-powered rectifier circuit for low-voltage energy harvesting applications. , 2012, , .		3
33	A Miniature and Non-Resonant Vibration-based Energy Harvester Structure. Procedia Engineering, 2012, 47, 664-667.	1.2	5
34	An electromagnetic energy harvesting system for low frequency applications with a passive interface ASIC in standard CMOS. Sensors and Actuators A: Physical, 2012, 188, 158-166.	4.1	38
35	A fully integrated power management circuit for electromagnetic energy harvesting applications. , 2012, , .		1
36	A vibration-based electromagnetic energy harvester system with highly efficient interface		9

electronics., 2011,,.

#	Article	IF	CITATIONS
37	Hybrid energy harvesting from keyboard. , 2011, , .		8
38	A Vibration-Based Electromagnetic Energy Harvester Using Mechanical Frequency Up-Conversion Method. IEEE Sensors Journal, 2011, 11, 481-488.	4.7	156
39	A Cr-Ni thermoelectric MEMS energy harvester for low profile applications. , 2011, , .		4
40	An interface circuit prototype for a vibration-based electromagnetic energy harvester. , 2010, , .		7
41	A mechanical frequency up-conversion mechanism for vibration based energy harvesters. , 2009, , .		6