Yongqiang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6974451/publications.pdf

Version: 2024-02-01

567281 434195 30 1,628 15 31 citations h-index g-index papers 32 32 32 1821 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chemical oxidation-free site-specific 5-hydroxymethylcytosine assay. Sensors and Actuators B: Chemical, 2022, 353, 131161.	7.8	1
2	Integration of the Ligase Chain Reaction with the CRISPR-Cas12a System for Homogeneous, Ultrasensitive, and Visual Detection of microRNA. Analytical Chemistry, 2022, 94, 4119-4125.	6. 5	18
3	Sensitive detection of fusion transcripts with padlock probe-based continuous cascade amplification (P-CCA). Analyst, The, 2022, , .	3 . 5	1
4	Integration of magnetic separation and real-time ligation chain reaction for detection of uracil-DNA glycosylase. Analytical and Bioanalytical Chemistry, 2021, 413, 255-261.	3.7	3
5	Polymyxin B-modified conjugated oligomer nanoparticle for targeted identification and enhanced photodynamic antimicrobial therapy. Chemical Communications, 2021, 57, 11244-11247.	4.1	3
6	A novel fluorescent glycopolymer for endogenous hydrogen peroxide imaging in living cells in a fully aqueous environment. Polymer Journal, 2020, 52, 481-491.	2.7	1
7	Effect of Distance from Catalytic Synergy Group to Iron Porphyrin Center on Activity of G-Quadruplex/Hemin DNAzyme. Molecules, 2020, 25, 3425.	3.8	6
8	Light-Excited Antibiotics for Potentiating Bacterial Killing via Reactive Oxygen Species Generation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16150-16158.	8.0	42
9	A facile one-step grafting of polyphosphonium onto halloysite nanotubes initiated by Ce(<scp>iv</scp>). Chemical Communications, 2019, 55, 1040-1043.	4.1	33
10	Enhancement of the polymerase chain reaction by tungsten disulfide. RSC Advances, 2019, 9, 9373-9378.	3.6	5
11	Multifunctional Oligonucleotide-Functionalized Conjugated Oligomer Nanoparticles for Targeted Cancer Cell Imaging and Therapy. ACS Applied Bio Materials, 2019, 2, 1340-1347.	4.6	2
11	Multifunctional Oligonucleotide-Functionalized Conjugated Oligomer Nanoparticles for Targeted Cancer Cell Imaging and Therapy. ACS Applied Bio Materials, 2019, 2, 1340-1347. Highly Sensitive Detection of Uracil-DNA Glycosylase Activity Based on Self-Initiating Multiple Rolling Circle Amplification. ACS Omega, 2019, 4, 3881-3886.	4.6 3.5	2
	Cancer Cell Imaging and Therapy. ACS Applied Bio Materials, 2019, 2, 1340-1347. Highly Sensitive Detection of Uracil-DNA Glycosylase Activity Based on Self-Initiating Multiple Rolling		
12	Cancer Cell Imaging and Therapy. ACS Applied Bio Materials, 2019, 2, 1340-1347. Highly Sensitive Detection of Uracil-DNA Glycosylase Activity Based on Self-Initiating Multiple Rolling Circle Amplification. ACS Omega, 2019, 4, 3881-3886.	3.5	14
12	Cancer Cell Imaging and Therapy. ACS Applied Bio Materials, 2019, 2, 1340-1347. Highly Sensitive Detection of Uracil-DNA Glycosylase Activity Based on Self-Initiating Multiple Rolling Circle Amplification. ACS Omega, 2019, 4, 3881-3886. Recent advances in microRNA detection. Analyst, The, 2018, 143, 1758-1774. Integration of T7 exonuclease-triggered amplification and cationic conjugated polymer biosensing for	3.5 3.5	142
12 13 14	Cancer Cell Imaging and Therapy. ACS Applied Bio Materials, 2019, 2, 1340-1347. Highly Sensitive Detection of Uracil-DNA Glycosylase Activity Based on Self-Initiating Multiple Rolling Circle Amplification. ACS Omega, 2019, 4, 3881-3886. Recent advances in microRNA detection. Analyst, The, 2018, 143, 1758-1774. Integration of T7 exonuclease-triggered amplification and cationic conjugated polymer biosensing for highly sensitive detection of microRNA. Talanta, 2018, 190, 475-479. Conjugated Polymers Act Synergistically with Antibiotics to Combat Bacterial Drug Resistance. ACS	3.5 3.5 5.5	14 142 7
12 13 14	Cancer Cell Imaging and Therapy. ACS Applied Bio Materials, 2019, 2, 1340-1347. Highly Sensitive Detection of Uracil-DNA Glycosylase Activity Based on Self-Initiating Multiple Rolling Circle Amplification. ACS Omega, 2019, 4, 3881-3886. Recent advances in microRNA detection. Analyst, The, 2018, 143, 1758-1774. Integration of T7 exonuclease-triggered amplification and cationic conjugated polymer biosensing for highly sensitive detection of microRNA. Talanta, 2018, 190, 475-479. Conjugated Polymers Act Synergistically with Antibiotics to Combat Bacterial Drug Resistance. ACS Applied Materials & Drug Re	3.5 3.5 5.5	14 142 7 40

#	Article	IF	CITATIONS
19	Visual Detection of Multiplex MicroRNAs Using Cationic Conjugated Polymer Materials. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1520-1526.	8.0	33
20	Sensitive quantification of messenger RNA with a real-time ligase chain reaction by using a ribonucleotide-modified DNA probe. Chemical Communications, 2014, 50, 13093-13095.	4.1	10
21	Homogeneous and Sensitive Detection of microRNA with Ligase Chain Reaction and Lambda Exonuclease-Assisted Cationic Conjugated Polymer Biosensing. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6181-6185.	8.0	61
22	Ligase chain reaction coupled with rolling circle amplification for high sensitivity detection of single nucleotide polymorphisms. Analyst, The, 2013, 138, 2958.	3.5	11
23	Fluorescently Cationic Conjugated Polymer as an Indicator of Ligase Chain Reaction for Sensitive and Homogeneous Detection of Single Nucleotide Polymorphism. Analytical Chemistry, 2012, 84, 3739-3744.	6.5	49
24	Integration of rolling circle amplification and cationic conjugated polymer for the homogeneous detection of single nucleotide polymorphisms. Science Bulletin, 2011, 56, 3247.	1.7	8
25	Ultrasensitive Detection of microRNAs by Exponential Isothermal Amplification. Angewandte Chemie - International Edition, 2010, 49, 5498-5501.	13.8	452
26	Simple and sensitive detection of microRNAs with ligase chain reaction. Chemical Communications, 2010, 46, 2432.	4.1	65
27	Highly Sensitive Determination of microRNA Using Targetâ€Primed and Branched Rollingâ€Circle Amplification. Angewandte Chemie - International Edition, 2009, 48, 3268-3272.	13.8	385
28	Homogeneous and label-free fluorescence detection of single-nucleotide polymorphism using target-primed branched rolling circle amplification. Analytical Biochemistry, 2008, 378, 123-126.	2.4	19
29	Homogeneous and label-free bioluminescence detection of single nucleotide polymorphism with rolling circle amplification. Analyst, The, 2008, 133, 750.	3.5	11
30	Ferric nanoparticle-based resonance light scattering determination of DNA at nanogram levels. Talanta, 2007, 71, 1757-1761.	5.5	21