Yongqiang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6974451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasensitive Detection of microRNAs by Exponential Isothermal Amplification. Angewandte Chemie - International Edition, 2010, 49, 5498-5501.	13.8	452
2	Highly Sensitive Determination of microRNA Using Targetâ€Primed and Branched Rollingâ€Circle Amplification. Angewandte Chemie - International Edition, 2009, 48, 3268-3272.	13.8	385
3	Recent advances in microRNA detection. Analyst, The, 2018, 143, 1758-1774.	3.5	142
4	Simple and sensitive detection of microRNAs with ligase chain reaction. Chemical Communications, 2010, 46, 2432.	4.1	65
5	Homogeneous and Sensitive Detection of microRNA with Ligase Chain Reaction and Lambda Exonuclease-Assisted Cationic Conjugated Polymer Biosensing. ACS Applied Materials & Interfaces, 2014, 6, 6181-6185.	8.0	61
6	Fluorescently Cationic Conjugated Polymer as an Indicator of Ligase Chain Reaction for Sensitive and Homogeneous Detection of Single Nucleotide Polymorphism. Analytical Chemistry, 2012, 84, 3739-3744.	6.5	49
7	Light-Excited Antibiotics for Potentiating Bacterial Killing via Reactive Oxygen Species Generation. ACS Applied Materials & Interfaces, 2020, 12, 16150-16158.	8.0	42
8	Conjugated Polymers Act Synergistically with Antibiotics to Combat Bacterial Drug Resistance. ACS Applied Materials & Interfaces, 2017, 9, 18512-18520.	8.0	40
9	A simple molecular beacon with duplex-specific nuclease amplification for detection of microRNA. Analyst, The, 2016, 141, 1071-1076.	3.5	38
10	Visual Detection of Multiplex MicroRNAs Using Cationic Conjugated Polymer Materials. ACS Applied Materials & amp; Interfaces, 2016, 8, 1520-1526.	8.0	33
11	A facile one-step grafting of polyphosphonium onto halloysite nanotubes initiated by Ce(<scp>iv</scp>). Chemical Communications, 2019, 55, 1040-1043.	4.1	33
12	Ferric nanoparticle-based resonance light scattering determination of DNA at nanogram levels. Talanta, 2007, 71, 1757-1761.	5.5	21
13	Homogeneous and label-free fluorescence detection of single-nucleotide polymorphism using target-primed branched rolling circle amplification. Analytical Biochemistry, 2008, 378, 123-126.	2.4	19
14	Integration of the Ligase Chain Reaction with the CRISPR-Cas12a System for Homogeneous, Ultrasensitive, and Visual Detection of microRNA. Analytical Chemistry, 2022, 94, 4119-4125.	6.5	18
15	Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction. Analytical and Bioanalytical Chemistry, 2017, 409, 107-114.	3.7	14
16	Highly Sensitive Detection of Uracil-DNA Glycosylase Activity Based on Self-Initiating Multiple Rolling Circle Amplification. ACS Omega, 2019, 4, 3881-3886.	3.5	14
17	Homogeneous and label-free bioluminescence detection of single nucleotide polymorphism with rolling circle amplification. Analyst, The, 2008, 133, 750.	3.5	11
18	Ligase chain reaction coupled with rolling circle amplification for high sensitivity detection of single nucleotide polymorphisms. Analyst, The, 2013, 138, 2958.	3.5	11

YONGQIANG CHENG

#	Article	IF	CITATIONS
19	Sensitive quantification of messenger RNA with a real-time ligase chain reaction by using a ribonucleotide-modified DNA probe. Chemical Communications, 2014, 50, 13093-13095.	4.1	10
20	Integration of rolling circle amplification and cationic conjugated polymer for the homogeneous detection of single nucleotide polymorphisms. Science Bulletin, 2011, 56, 3247.	1.7	8
21	Integration of T7 exonuclease-triggered amplification and cationic conjugated polymer biosensing for highly sensitive detection of microRNA. Talanta, 2018, 190, 475-479.	5.5	7
22	Effect of Distance from Catalytic Synergy Group to Iron Porphyrin Center on Activity of G-Quadruplex/Hemin DNAzyme. Molecules, 2020, 25, 3425.	3.8	6
23	Enhancement of the polymerase chain reaction by tungsten disulfide. RSC Advances, 2019, 9, 9373-9378.	3.6	5
24	Conjugated Polymers/DNA Hybrid Materials for Protein Inactivation. ACS Applied Materials & Interfaces, 2016, 8, 22923-22929.	8.0	4
25	Integration of magnetic separation and real-time ligation chain reaction for detection of uracil-DNA glycosylase. Analytical and Bioanalytical Chemistry, 2021, 413, 255-261.	3.7	3
26	Polymyxin B-modified conjugated oligomer nanoparticle for targeted identification and enhanced photodynamic antimicrobial therapy. Chemical Communications, 2021, 57, 11244-11247.	4.1	3
27	Multifunctional Oligonucleotide-Functionalized Conjugated Oligomer Nanoparticles for Targeted Cancer Cell Imaging and Therapy. ACS Applied Bio Materials, 2019, 2, 1340-1347.	4.6	2
28	A novel fluorescent glycopolymer for endogenous hydrogen peroxide imaging in living cells in a fully aqueous environment. Polymer Journal, 2020, 52, 481-491.	2.7	1
29	Chemical oxidation-free site-specific 5-hydroxymethylcytosine assay. Sensors and Actuators B: Chemical, 2022, 353, 131161.	7.8	1
30	Sensitive detection of fusion transcripts with padlock probe-based continuous cascade amplification (P-CCA). Analyst, The, 2022, , .	3.5	1