## **Pieter Simoens**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6974442/publications.pdf Version: 2024-02-01



DIFTED SIMOFNS

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging. Physica A: Statistical Mechanics and Its Applications, 2022, 590, 126702. | 1.2 | 5         |
| 2  | lterative neural networks for adaptive inference on resource-constrained devices. Neural Computing and Applications, 2022, 34, 10321-10336.                                                 | 3.2 | 6         |
| 3  | Automated training of location-specific edge models for traffic counting. Computers and Electrical Engineering, 2022, 99, 107763.                                                           | 3.0 | 3         |
| 4  | Multi-branch Neural Networks for Video Anomaly Detection in Adverse Lighting and Weather Conditions. , 2022, , .                                                                            |     | 8         |
| 5  | The value of measuring uncertainty in neural networks in dermoscopy. Journal of the American Academy of Dermatology, 2022, , .                                                              | 0.6 | Ο         |
| 6  | Foraging behaviour and patch size distribution jointly determine population dynamics in fragmented landscapes. Journal of the Royal Society Interface, 2022, 19, .                          | 1.5 | 2         |
| 7  | Leveraging the Bhattacharyya coefficient for uncertainty quantification in deep neural networks.<br>Neural Computing and Applications, 2021, 33, 10259-10275.                               | 3.2 | 9         |
| 8  | Decoupled appearance and motion learning for efficient anomaly detection in surveillance video.<br>Computer Vision and Image Understanding, 2021, 210, 103249.                              | 3.0 | 22        |
| 9  | Data-Efficient Sensor Upgrade Path Using Knowledge Distillation. Sensors, 2021, 21, 6523.                                                                                                   | 2.1 | 4         |
| 10 | Resource ephemerality influences effectiveness of altruistic behavior in collective foraging. Swarm<br>Intelligence, 2021, 15, 427-457.                                                     | 1.3 | 1         |
| 11 | ChronoPilot $\hat{a} \in \mathcal{C}$ Modulating Time Perception. , 2021, , .                                                                                                               |     | 8         |
| 12 | Training binary neural networks with knowledge transfer. Neurocomputing, 2020, 396, 534-541.                                                                                                | 3.5 | 12        |
| 13 | An Artificial Intelligence-Based Collaboration Approach in Industrial IoT Manufacturing: Key<br>Concepts, Architectural Extensions and Potential Applications. Sensors, 2020, 20, 5480.     | 2.1 | 63        |
| 14 | Adaptive Foraging in Dynamic Environments Using Scale-Free Interaction Networks. Frontiers in Robotics and AI, 2020, 7, 86.                                                                 | 2.0 | 7         |
| 15 | Learning robots to grasp by demonstration. Robotics and Autonomous Systems, 2020, 127, 103474.                                                                                              | 3.0 | 21        |
| 16 | Hybrid foraging in patchy environments using spatial memory. Journal of the Royal Society Interface, 2020, 17, 20200026.                                                                    | 1.5 | 23        |
| 17 | Facilitating the Analysis of COVID-19 Literature Through a Knowledge Graph. Lecture Notes in Computer Science, 2020, , 344-357.                                                             | 1.0 | 14        |
| 18 | Collective Decision-Making on Triadic Graphs. Springer Proceedings in Complexity, 2020, , 119-130.                                                                                          | 0.2 | 4         |

PIETER SIMOENS

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Construction Task Allocation Through the Collective Perception of a Dynamic Environment. Lecture<br>Notes in Computer Science, 2020, , 82-95.                                          | 1.0 | 7         |
| 20 | Action Graphs for Performing Goal Recognition Design on Human-Inhabited Environments. Sensors, 2019, 19, 2741.                                                                         | 2.1 | 2         |
| 21 | Scale-Free Features in Collective Robot Foraging. Applied Sciences (Switzerland), 2019, 9, 2667.                                                                                       | 1.3 | 9         |
| 22 | Asynchronous Spiking Neurons, the Natural Key to Exploit Temporal Sparsity. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 668-678.                    | 2.7 | 15        |
| 23 | Robot Assistance in Dynamic Smart Environments—A Hierarchical Continual Planning in the Now<br>Framework. Sensors, 2019, 19, 4856.                                                     | 2.1 | 7         |
| 24 | Conversion of Synchronous Artificial Neural Network to Asynchronous Spiking Neural Network using sigma-delta quantization. , 2019, , .                                                 |     | 17        |
| 25 | Coherent collective behaviour emerging from decentralised balancing of social feedback and noise.<br>Swarm Intelligence, 2019, 13, 321-345.                                            | 1.3 | 25        |
| 26 | Collective sampling of environmental features under limited sampling budget. Journal of<br>Computational Science, 2019, 31, 95-110.                                                    | 1.5 | 3         |
| 27 | Local ant system for allocating robot swarms to time-constrained tasks. Journal of Computational Science, 2019, 31, 33-44.                                                             | 1.5 | 18        |
| 28 | The Neglected Pieces of Designing Collective Decision-Making Processes. Frontiers in Robotics and AI, 2019, 6, 16.                                                                     | 2.0 | 12        |
| 29 | Pro-active positioning of a social robot intervening upon behavioral disturbances of persons with dementia in a smart nursing home. Cognitive Systems Research, 2019, 57, 160-174.     | 1.9 | 10        |
| 30 | Multi-fidelity deep neural networks for adaptive inference in the internet of multimedia things.<br>Future Generation Computer Systems, 2019, 97, 355-360.                             | 4.9 | 7         |
| 31 | A tale of three systems: Case studies on the application of architectural tactics for cyber-foraging.<br>Future Generation Computer Systems, 2019, 96, 119-147.                        | 4.9 | 3         |
| 32 | Applying Scale-Invariant Dynamics to Improve Consensus Achievement of Agents in Motion. Advances in<br>Intelligent Systems and Computing, 2019, , 344-348.                             | 0.5 | 0         |
| 33 | On the Feasibility of Using Current Data Centre Infrastructure for Latency-sensitive Applications. IEEE<br>Transactions on Cloud Computing, 2018, , 1-1.                               | 3.1 | 2         |
| 34 | The Internet of Robotic Things. International Journal of Advanced Robotic Systems, 2018, 15, 172988141875942.                                                                          | 1.3 | 152       |
| 35 | DIANNE: a modular framework for designing, training and deploying deep neural networks on heterogeneous distributed infrastructure. Journal of Systems and Software, 2018, 141, 52-65. | 3.3 | 17        |
| 36 | The crowd as a cameraman: on-stage display of crowdsourced mobile video at large-scale events.<br>Multimedia Tools and Applications, 2018, 77, 597-629.                                | 2.6 | 2         |

PIETER SIMOENS

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Impact of Interaction Models on the Coherence of Collective Decision-Making: A Case Study with Simulated Locusts. Lecture Notes in Computer Science, 2018, , 252-263.                                        | 1.0 | 9         |
| 38 | Docker Layer Placement for On-Demand Provisioning of Services on Edge Clouds. IEEE Transactions on Network and Service Management, 2018, 15, 1161-1174.                                                          | 3.2 | 25        |
| 39 | Collective Lévy Walk for Efficient Exploration in Unknown Environments. Lecture Notes in Computer<br>Science, 2018, , 260-264.                                                                                   | 1.0 | 6         |
| 40 | The cascading neural network: building the Internet of Smart Things. Knowledge and Information Systems, 2017, 52, 791-814.                                                                                       | 2.1 | 39        |
| 41 | Service-Centric Networking for Distributed Heterogeneous Clouds. , 2017, 55, 208-215.                                                                                                                            |     | 10        |
| 42 | Interoperability for Industrial Cyber-Physical Systems: An Approach for Legacy Systems. IEEE<br>Transactions on Industrial Informatics, 2017, 13, 3370-3378.                                                     | 7.2 | 133       |
| 43 | Scale invariance in natural and artificial collective systems: a review. Journal of the Royal Society Interface, 2017, 14, 20170662.                                                                             | 1.5 | 46        |
| 44 | Architecture for incorporating Internet-of-Things sensors and actuators into robot task planning in dynamic environments. , 2017, , .                                                                            |     | 3         |
| 45 | Sensor fusion for robot control through deep reinforcement learning. , 2017, , .                                                                                                                                 |     | 15        |
| 46 | Internet of Robotic Things: Context-Aware and Personalized Interventions of Assistive Social Robots<br>(Short Paper). , 2016, , .                                                                                |     | 21        |
| 47 | Distributed Neural Networks for Internet of Things: The Big-Little Approach. Lecture Notes of the<br>Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2016, ,<br>484-492. | 0.2 | 15        |
| 48 | Dynamic auto-scaling and scheduling of deadline constrained service workloads on IaaS clouds.<br>Journal of Systems and Software, 2016, 118, 101-114.                                                            | 3.3 | 30        |
| 49 | Multi-fidelity matryoshka neural networks for constrained IoT devices. , 2016, , .                                                                                                                               |     | 0         |
| 50 | Mobile device power models for energy efficient dynamic offloading at runtime. Journal of Systems and Software, 2016, 113, 173-187.                                                                              | 3.3 | 33        |
| 51 | Middleware Platform for Distributed Applications Incorporating Robots, Sensors and the Cloud. , 2016, , .                                                                                                        |     | 9         |
| 52 | Edge Analytics in the Internet of Things. IEEE Pervasive Computing, 2015, 14, 24-31.                                                                                                                             | 1.1 | 351       |
| 53 | Discrete-event simulation for efficient and stable resource allocation in collaborative mobile cloudlets. Simulation Modelling Practice and Theory, 2015, 50, 109-129.                                           | 2.2 | 28        |
| 54 | Platform for real-time subjective assessment of interactive multimedia applications. Multimedia Tools and Applications, 2014, 72, 749.                                                                           | 2.6 | 2         |

PIETER SIMOENS

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Adaptive deployment and configuration for mobile augmented reality in the cloudlet. Journal of<br>Network and Computer Applications, 2014, 41, 206-216.                                                          | 5.8 | 38        |
| 56 | Bandwidth efficient adaptive forward error correction mechanism with feedback channel. Journal of Communications and Networks, 2014, 16, 322-334.                                                                | 1.8 | 12        |
| 57 | User subscription-based resource management for Desktop-as-a-Service platforms. Journal of Supercomputing, 2014, 69, 412-428.                                                                                    | 2.4 | 5         |
| 58 | Network latency hiding in thin client systems through server-centric speculative display updating.<br>Journal of Network and Computer Applications, 2014, 41, 228-239.                                           | 5.8 | 1         |
| 59 | Leveraging Cloudlets for Immersive Collaborative Applications. IEEE Pervasive Computing, 2013, 12, 30-38.                                                                                                        | 1.1 | 49        |
| 60 | Lowering the barriers to large-scale mobile crowdsensing. , 2013, , .                                                                                                                                            |     | 84        |
| 61 | Adaptive Application Configuration and Distribution in Mobile Cloudlet Middleware. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2013, , 178-191. | 0.2 | 4         |
| 62 | Cross-layer reduction of wireless network card idle time to optimize energy consumption of pull thin client protocols. Journal of Communications and Networks, 2012, 14, 75-90.                                  | 1.8 | 1         |
| 63 | Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework. Multimedia<br>Tools and Applications, 2012, 61, 447-470.                                                                  | 2.6 | 2         |
| 64 | Efficient resource management for virtual desktop cloud computing. Journal of Supercomputing, 2012, 62, 741-767.                                                                                                 | 2.4 | 38        |
| 65 | Automatic fine-grained area detection for thin client systems. Journal of Network and Computer Applications, 2012, 35, 1620-1632.                                                                                | 5.8 | 5         |
| 66 | AIOLOS: Middleware for improving mobile application performance through cyber foraging. Journal of Systems and Software, 2012, 85, 2629-2639.                                                                    | 3.3 | 73        |
| 67 | Dynamic deployment and quality adaptation for mobile augmented reality applications. Journal of<br>Systems and Software, 2011, 84, 1871-1882.                                                                    | 3.3 | 33        |
| 68 | Remote Display Solutions for Mobile Cloud Computing. Computer, 2011, 44, 46-53.                                                                                                                                  | 1.2 | 60        |
| 69 | Power efficiency of thin clients. European Transactions on Telecommunications, 2010, 21, 479-490.                                                                                                                | 1.2 | 12        |
| 70 | Cross-Layer Optimization of Radio Sleep Intervals to Increase Thin Client Energy Efficiency. IEEE<br>Communications Letters, 2010, 14, 1095-1097.                                                                | 2.5 | 9         |
| 71 | Energy Efficiency in Thin Client Solutions. Lecture Notes of the Institute for Computer Sciences,<br>Social-Informatics and Telecommunications Engineering, 2010, , 109-116.                                     | 0.2 | 5         |
| 72 | An autonomic architecture for optimizing QoE in multimedia access networks. Computer Networks, 2009, 53, 1587-1602.                                                                                              | 3.2 | 41        |

IF

CITATIONS

## # ARTICLE

73 Self management of a mobile thin client service. , 2009, , .