
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6973853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-objective optimization reveals time- and dose-dependent inflammatory cytokine-mediated regulation of human stem cell derived T-cell development. Npj Regenerative Medicine, 2022, 7, 11.	5.2	10
2	IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data. PLoS Computational Biology, 2022, 18, e1009907.	3.2	13
3	Microdroplet-based one-step RT-PCR for ultrahigh throughput single-cell multiplex gene expression analysis and rare cell detection. Scientific Reports, 2021, 11, 6777.	3.3	15
4	Endogenous suppression of WNT signalling in human embryonic stem cells leads to low differentiation propensity towards definitive endoderm. Scientific Reports, 2021, 11, 6137.	3.3	6
5	Process evolution in cell and gene therapy from discovery to commercialization. Canadian Journal of Chemical Engineering, 2021, 99, 2517-2524.	1.7	6
6	Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1–2 safety and feasibility study. Lancet Haematology,the, 2020, 7, e134-e145.	4.6	138
7	A 96-well culture platform enables longitudinal analyses of engineered human skeletal muscle microtissue strength. Scientific Reports, 2020, 10, 6918.	3.3	68
8	Functional arrays of human pluripotent stem cell-derived cardiac microtissues. Scientific Reports, 2020, 10, 6919.	3.3	32
9	Context-explorer: Analysis of spatially organized protein expression in high-throughput screens. PLoS Computational Biology, 2019, 15, e1006384.	3.2	11
10	Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate the Infarcted Pig Heart but Induce Ventricular Tachyarrhythmias. Stem Cell Reports, 2019, 12, 967-981.	4.8	207
11	Cell competition during reprogramming gives rise to dominant clones. Science, 2019, 364, .	12.6	76
12	Identifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors. Cell Reports, 2019, 26, 2078-2087.e3.	6.4	36
13	High-throughput micropatterning platform reveals Nodal-dependent bisection of peri-gastrulation–associated versus preneurulation-associated fate patterning. PLoS Biology, 2019, 17, e3000081.	5.6	34
14	Chemically controlled aggregation of pluripotent stem cells. Biotechnology and Bioengineering, 2018, 115, 2061-2066.	3.3	22
15	Modeling signalingâ€dependent pluripotency with Boolean logic to predict cell fate transitions. Molecular Systems Biology, 2018, 14, e7952.	7.2	49
16	A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature, 2018, 553, 515-520.	27.8	256
17	FZD4 Marks Lateral Plate Mesoderm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell-Derived Cardiac Progenitors. Stem Cell Reports, 2018, 10, 87-100.	4.8	32
18	Mechanics-guided developmental fate patterning. Nature Materials, 2018, 17, 571-572.	27.5	3

#	Article	IF	CITATIONS
19	Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?. Frontiers in Pharmacology, 2018, 9, 71.	3.5	180
20	Stem cell bioengineering: building from stem cell biology. Nature Reviews Genetics, 2018, 19, 595-614.	16.3	76
21	Modulating cell state to enhance suspension expansion of human pluripotent stem cells. Proceedings of the United States of America, 2018, 115, 6369-6374.	7.1	29
22	Single UM171 Expanded Cord Blood Permits Transplantation of Better HLA Matched Cords with Excellent Gvhd Relapse Free Survival. Blood, 2018, 132, 4658-4658.	1.4	3
23	Engineering a humanized bone organ model in mice to study bone metastases. Nature Protocols, 2017, 12, 639-663.	12.0	91
24	Progenitor T-cell differentiation from hematopoietic stem cells using Delta-like-4 and VCAM-1. Nature Methods, 2017, 14, 531-538.	19.0	102
25	Steric Hindrance Assay for Secreted Factors in Stem Cell Culture. ACS Sensors, 2017, 2, 495-500.	7.8	14
26	Engineering the haemogenic niche mitigates endogenous inhibitory signals and controls pluripotent stem cell-derived blood emergence. Nature Communications, 2017, 8, 15380.	12.8	21
27	Engineering cell fitness: lessons for regenerative medicine. Current Opinion in Biotechnology, 2017, 47, 7-15.	6.6	19
28	Achieving Efficient Manufacturing and Quality Assurance through Synthetic Cell Therapy Design. Cell Stem Cell, 2017, 20, 13-17.	11.1	33
29	A stepwise model of Reaction-Diffusion and Positional-Information governs self-organized human peri-gastrulation-like patterning. Development (Cambridge), 2017, 144, 4298-4312.	2.5	124
30	Synthetic gene circuits and cellular decision-making in human pluripotent stem cells. Current Opinion in Systems Biology, 2017, 5, 93-103.	2.6	25
31	Enhanced human hematopoietic stem and progenitor cell engraftment by blocking donor T cell–mediated TNFα signaling. Science Translational Medicine, 2017, 9, .	12.4	23
32	Two-dimensional arrays of cell-laden polymer hydrogel modules. Biomicrofluidics, 2016, 10, 014110.	2.4	12
33	A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature, 2016, 540, 433-437.	27.8	617
34	Quality cell therapy manufacturing by design. Nature Biotechnology, 2016, 34, 393-400.	17.5	214
35	Proneurogenic Ligands Defined by Modeling Developing Cortex Growth Factor Communication Networks. Neuron, 2016, 91, 988-1004.	8.1	39
36	Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform. Scientific Reports, 2016, 6, 31951.	3.3	29

#	Article	IF	CITATIONS
37	Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles. Cell Reports, 2016, 14, 3001-3018.	6.4	160
38	miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell, 2016, 29, 214-228.	16.8	216
39	Human pluripotent stem cell process parameter optimization in a small scale suspension bioreactor. BMC Proceedings, 2015, 9, O10.	1.6	3
40	Proportional-Integral-Derivative (PID) Control of Secreted Factors for Blood Stem Cell Culture. PLoS ONE, 2015, 10, e0137392.	2.5	11
41	The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues. Biomaterials, 2015, 62, 1-12.	11.4	69
42	Bringing Blood Stem Cell Phenotype, Genotype, and Function Closer Together. Cell Stem Cell, 2015, 16, 574-575.	11.1	0
43	Chasing blood. Nature, 2015, 518, 488-490.	27.8	3
44	CD24 tracks divergent pluripotent states in mouse and human cells. Nature Communications, 2015, 6, 7329.	12.8	76
45	LIF signaling in stem cells and development. Development (Cambridge), 2015, 142, 2230-2236.	2.5	103
46	A Mass Spectrometric-Derived Cell Surface Protein Atlas. PLoS ONE, 2015, 10, e0121314.	2.5	356
47	Transforming the Promise of Pluripotent Stem Cell-Derived Cardiomyocytes to a Therapy: Challenges and Solutions for Clinical Trials. Canadian Journal of Cardiology, 2014, 30, 1335-1349.	1.7	27
48	Genome-wide characterization of the routes to pluripotency. Nature, 2014, 516, 198-206.	27.8	187
49	A Global Assessment of Stem Cell Engineering. Tissue Engineering - Part A, 2014, 20, 2575-2589.	3.1	7
50	Realâ€ŧime monitoring and control of soluble signaling factors enables enhanced progenitor cell outputs from human cord blood stem cell cultures. Biotechnology and Bioengineering, 2014, 111, 1258-1264.	3.3	13
51	Intercellular network structure and regulatory motifs in the human hematopoietic system. Molecular Systems Biology, 2014, 10, 741.	7.2	57
52	Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science, 2014, 345, 1509-1512.	12.6	470
53	Computational Modeling and Stem Cell Engineering. Science Policy Reports, 2014, , 65-97.	0.1	0
54	Blood stem cell fate regulation by Delta-1–mediated rewiring of IL-6 paracrine signaling. Blood, 2014, 123, 650-658.	1.4	23

#	Article	IF	CITATIONS
55	Local BMP-SMAD1 Signaling Increases LIF Receptor-Dependent STAT3 Responsiveness and Primed-to-Naive Mouse Pluripotent Stem Cell Conversion Frequency. Stem Cell Reports, 2014, 3, 156-168.	4.8	18
56	High-throughput fingerprinting of human pluripotent stem cell fate responses and lineage bias. Nature Methods, 2013, 10, 1225-1231.	19.0	59
57	Blood stem cell products: Toward sustainable benchmarks for clinical translation. BioEssays, 2013, 35, 201-210.	2.5	18
58	High density continuous production of murine pluripotent cells in an acoustic perfused bioreactor at different oxygen concentrations. Biotechnology and Bioengineering, 2013, 110, 648-655.	3.3	40
59	Integrative network analysis of signaling in human CD34 ⁺ hematopoietic progenitor cells by global phosphoproteomic profiling using TiO ₂ enrichment combined with 2D LCâ€MS/MS and pathway mapping. Proteomics, 2013, 13, 1325-1333.	2.2	14
60	Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4698-707.	7.1	252
61	PERT: A Method for Expression Deconvolution of Human Blood Samples from Varied Microenvironmental and Developmental Conditions. PLoS Computational Biology, 2012, 8, e1002838.	3.2	111
62	Predictive microfluidic control of regulatory ligand trajectories in individual pluripotent cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3264-3269.	7.1	63
63	A Microfabricated Platform to Measure and Manipulate the Mechanics of Engineered Cardiac Microtissues. Tissue Engineering - Part A, 2012, 18, 910-919.	3.1	355
64	Rapid Expansion of Human Hematopoietic Stem Cells by Automated Control of Inhibitory Feedback Signaling. Cell Stem Cell, 2012, 10, 218-229.	11.1	224
65	Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures. Nature Methods, 2012, 9, 509-516.	19.0	98
66	Tissue engineering 2.0: guiding self-organization during pluripotent stem cell differentiation. Current Opinion in Biotechnology, 2012, 23, 810-819.	6.6	31
67	Microenvironment-mediated reversion of epiblast stem cells by reactivation of repressed JAK–STAT signaling. Integrative Biology (United Kingdom), 2012, 4, 1367.	1.3	12
68	Systematic engineering of 3D pluripotent stem cell niches to guide blood development. Biomaterials, 2012, 33, 1271-1280.	11.4	42
69	Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics. Biotechnology and Bioengineering, 2012, 109, 853-866.	3.3	51
70	Engineering the Pluripotent Stem Cell Niche for Directed Mesoderm Differentiation. , 2012, , 1-26.		0
71	High-throughput combinatorial cell co-culture using microfluidics. Integrative Biology (United) Tj ETQq1 1 0.784	314 rgBT / 1.3	Overlock 10 183
72	An Alternative Splicing Switch Regulates Embryonic Stem Cell Pluripotency and Reprogramming. Cell, 2011, 147, 132-146.	28.9	325

#	Article	IF	CITATIONS
73	Engineered heart tissue enables study of residual undifferentiated embryonic stem cell activity in a cardiac environment. Biotechnology and Bioengineering, 2011, 108, 704-719.	3.3	22
74	Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation. Biomaterials, 2011, 32, 48-56.	11.4	154
75	High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials, 2011, 32, 1477-1483.	11.4	183
76	Geometric Control of Cardiomyogenic Induction in Human Pluripotent Stem Cells. Tissue Engineering - Part A, 2011, 17, 1901-1909.	3.1	79
77	Enhanced Human Hematopoietic Stem Cell Self-Renewal Enabled by Controlling Feedback Signaling From Lineage Committed Cells. Blood, 2011, 118, 1274-1274.	1.4	5
78	The AC133+CD38â^', but not the rhodamine-low, phenotype tracks LTC-IC and SRC function in human cord blood ex vivo expansion cultures. Blood, 2010, 115, 257-260.	1.4	13
79	The use of vascular endothelial growth factor functionalized agarose to guide pluripotent stem cell aggregates toward blood progenitor cells. Biomaterials, 2010, 31, 8262-8270.	11.4	65
80	Immobilization of growth factors on solid supports for the modulation of stem cell fate. Nature Protocols, 2010, 5, 1042-1050.	12.0	50
81	Enabling stem cell therapies through synthetic stem cell–niche engineering. Journal of Clinical Investigation, 2010, 120, 60-70.	8.2	157
82	Synthetic Peptide Arrays for Pathway-Level Protein Monitoring by Liquid Chromatography-Tandem Mass Spectrometry. Molecular and Cellular Proteomics, 2010, 9, 2460-2473.	3.8	14
83	Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3329-3334.	7.1	83
84	Dynamic interaction networks in a hierarchically organized tissue. Molecular Systems Biology, 2010, 6, 417.	7.2	122
85	Cell–cell interaction networks regulate blood stem and progenitor cell fate. Molecular Systems Biology, 2009, 5, 293.	7.2	105
86	Generation of human embryonic stem cellâ€derived mesoderm and cardiac cells using sizeâ€specified aggregates in an oxygenâ€controlled bioreactor. Biotechnology and Bioengineering, 2009, 102, 493-507.	3.3	211
87	An automated system for delivery of an unstable transcription factor to hematopoietic stem cell cultures. Biotechnology and Bioengineering, 2009, 103, 402-412.	3.3	11
88	Pairing cells to enhance fusion. Nature Methods, 2009, 6, 123-124.	19.0	2
89	Growth Factors, Matrices, and Forces Combine and Control Stem Cells. Science, 2009, 324, 1673-1677.	12.6	2,351
90	Manipulation of Signaling Thresholds in "Engineered Stem Cell Niches―Identifies Design Criteria for Pluripotent Stem Cell Screens. PLoS ONE, 2009, 4, e6438.	2.5	63

#	Article	IF	CITATIONS
91	Enhancement of Soluble Transcription Factor (TAT-HOXB4 and TAT-NUP98HOXA10HD) - Mediated Human Hematopoietic Stem Cell Self-Renewal by Minimizing Inhibitory Endogenous Signalling Blood, 2009, 114, 1493-1493.	1.4	0
92	Control of Human Embryonic Stem Cell Colony and Aggregate Size Heterogeneity Influences Differentiation Trajectories. Stem Cells, 2008, 26, 2300-2310.	3.2	419
93	Soluble Flt-1 Regulates Flk-1 Activation to Control Hematopoietic and Endothelial Development in an Oxygen-Responsive Manner. Stem Cells, 2008, 26, 2832-2842.	3.2	33
94	TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature Cell Biology, 2008, 10, 837-848.	10.3	576
95	Functional immobilization of signaling proteins enables control of stem cell fate. Nature Methods, 2008, 5, 645-650.	19.0	190
96	Analysis of the temporal and concentration-dependent effects of BMP-4, VEGF, and TPO on development of embryonic stem cell–derived mesoderm and blood progenitors in a defined, serum-free media. Experimental Hematology, 2008, 36, 1186-1198.	0.4	24
97	The Systematic Production of Cells for Cell Therapies. Cell Stem Cell, 2008, 3, 369-381.	11.1	286
98	Seeding Bioreactor-Produced Embryonic Stem Cell-Derived Cardiomyocytes on Different Porous, Degradable, Polyurethane Scaffolds Reveals the Effect of Scaffold Architecture on Cell Morphology. Tissue Engineering - Part A, 2008, 14, 369-378.	3.1	69
99	Reproducible, Ultra High-Throughput Formation of Multicellular Organization from Single Cell Suspension-Derived Human Embryonic Stem Cell Aggregates. PLoS ONE, 2008, 3, e1565.	2.5	367
100	LIFâ€mediated control of embryonic stem cell selfâ€renewal emerges due to an autoregulatory loop. FASEB Journal, 2007, 21, 2020-2032.	0.5	63
101	Sensitivity Analysis of Intracellular Signaling Pathway Kinetics Predicts Targets for Stem Cell Fate Control. PLoS Computational Biology, 2007, 3, e130.	3.2	55
102	Prediction and Testing of Novel Transcriptional Networks Regulating Embryonic Stem Cell Self-Renewal and Commitment. Cell Stem Cell, 2007, 1, 71-86.	11.1	98
103	Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO Journal, 2007, 26, 4744-4755.	7.8	365
104	Phenotypic Analysis of Human Embryonic Stem Cells. , 2007, Chapter 1, Unit 1B.3.		16
105	Engineering cardiac healing using embryonic stem cell-derived cardiac cell seeded constructs. Frontiers in Bioscience - Landmark, 2007, 12, 3694.	3.0	10
106	Spatial Organization of Embryonic Stem Cell Responsiveness to Autocrine Gp130 Ligands Reveals an Autoregulatory Stem Cell Niche. Stem Cells, 2006, 24, 2538-2548.	3.2	58
107	Clinically Relevant Expansion of Hematopoietic Stem Cells with Conserved Function in a Single-Use, Closed-System Bioprocess. Biology of Blood and Marrow Transplantation, 2006, 12, 1020-1030.	2.0	50
108	Understanding cellular networks to improve hematopoietic stem cell expansion cultures. Current Opinion in Biotechnology, 2006, 17, 538-547.	6.6	34

#	Article	IF	CITATIONS
109	Scalable Production of Embryonic Stem Cell-Derived Cells. , 2005, 290, 353-364.		28
110	Shear-Controlled Single-Step Mouse Embryonic Stem Cell Expansion and Embryoid Body-Based Differentiation. Stem Cells, 2005, 23, 1333-1342.	3.2	217
111	Dynamic changes in cellular and microenvironmental composition can be controlled to elicit in vitro human hematopoietic stem cell expansion. Experimental Hematology, 2005, 33, 1229-1239.	0.4	59
112	Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output. Biotechnology and Bioengineering, 2005, 90, 452-461.	3.3	146
113	Clonal evolution of stem and differentiated cells can be predicted by integrating cell-intrinsic and -extrinsic parameters. Biotechnology and Applied Biochemistry, 2005, 42, 119.	3.1	16
114	Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2900-2905.	7.1	103
115	Sustained In Vitro Expansion of Bone Progenitors Is Cell Density Dependent. Stem Cells, 2004, 22, 39-50.	3.2	75
116	Controlled, Scalable Embryonic Stem Cell Differentiation Culture. Stem Cells, 2004, 22, 275-282.	3.2	272
117	Quantitative screening of embryonic stem cell differentiation: Endoderm formation as a model. Biotechnology and Bioengineering, 2004, 88, 287-298.	3.3	43
118	Systematic Approach to the Development of Stem Cell Expansion Cultures. , 2004, , 663-676.		2
119	Signal processing underlying extrinsic control of stem cell fate. Current Opinion in Hematology, 2004, 11, 95-101.	2.5	17
120	Culture Conditions for Generating Human Bone Marrow Stromal Cells Influence Cell Immunophenotype and In Vivo Biodistribution in Immune Deficient Mice Blood, 2004, 104, 2334-2334.	1.4	1
121	Towards predictive models of stem cell fate. Cytotechnology, 2003, 41, 75-92.	1.6	48
122	Fluorescence activated cell sorting reveals heterogeneous and cell nonâ€autonomous osteoprogenitor differentiation in fetal rat calvaria cell populations. Journal of Cellular Biochemistry, 2003, 90, 109-120.	2.6	18
123	Supplementation-dependent differences in the rates of embryonic stem cell self-renewal, differentiation, and apoptosis. Biotechnology and Bioengineering, 2003, 84, 505-517.	3.3	45
124	Scalable Production of Embryonic Stem Cell-Derived Cardiomyocytes. Tissue Engineering, 2003, 9, 767-778.	4.6	271
125	Two-Color Image Analysis Discriminates between Mineralized and Unmineralized Bone Nodules In Vitro. BioTechniques, 2003, 34, 1188-1198.	1.8	9
126	Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnology and Bioengineering, 2002, 78, 442-453.	3.3	321

#	Article	IF	CITATIONS
127	Ligand/Receptor Signaling Threshold (LIST) Model Accounts for gp130-Mediated Embryonic Stem Cell Self-Renewal Responses to LIF and HIL-6. Stem Cells, 2002, 20, 119-138.	3.2	85
128	Stem Cell Bioengineering. Annual Review of Biomedical Engineering, 2001, 3, 275-305.	12.3	121
129	A ligand-receptor signaling threshold model of stem cell differentiation control: a biologically conserved mechanism applicable to hematopoiesis. Blood, 2000, 96, 1215-1222.	1.4	99
130	Environmental Requirements of Hematopoietic Progenitor Cells in Ex Vivo Expansion Systems. , 1999, , 245-272.		8
131	Advances in hematopoietic stem cell culture. Current Opinion in Biotechnology, 1998, 9, 146-151.	6.6	33
132	Expansion of Hematopoietic Progenitor Cell Populations in Stirred Suspension Bioreactors of Normal Human Bone Marrow Cells. Nature Biotechnology, 1994, 12, 909-914.	17.5	102