

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/697361/publications.pdf Version: 2024-02-01

ANCLU

#	Article	IF	CITATIONS
1	Injectable self-healing cellulose hydrogel based on host-guest interactions and acylhydrazone bonds for sustained cancer therapy. Acta Biomaterialia, 2022, 141, 102-113.	4.1	40
2	Anisotropic Hybrid Hydrogels Constructed via the Noncovalent Assembly for Biomimetic Tissue Scaffold. Advanced Functional Materials, 2022, 32, .	7.8	32
3	High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing. Carbohydrate Polymers, 2022, 291, 119586.	5.1	23
4	Effect of confining pressure on peak penetration force of the TBM disc cutter. Arabian Journal of Geosciences, 2022, 15, .	0.6	1
5	Cellulose ionic conductor with tunable Seebeck coefficient for low-grade heat harvesting. Carbohydrate Polymers, 2022, 292, 119650.	5.1	10
6	Electronic skin based on cellulose/KCl/sorbitol organohydrogel. Carbohydrate Polymers, 2022, 292, 119645.	5.1	23
7	Extracellular matrix-mimicking nanofibrous chitosan microspheres as cell micro-ark for tissue engineering. Carbohydrate Polymers, 2022, 292, 119693.	5.1	12
8	Robust, magnetic cellulose/Fe3O4 film with anisotropic sensory property. Cellulose, 2021, 28, 2353-2364.	2.4	6
9	Biocompatible Chitin Hydrogel Incorporated with PEDOT Nanoparticles for Peripheral Nerve Repair. ACS Applied Materials & Interfaces, 2021, 13, 16106-16117.	4.0	67
10	Effects of In-situ Stress on Blasting Damage during Deep Tunnel Excavation. Arabian Journal for Science and Engineering, 2021, 46, 11447-11458.	1.7	7
11	Numerical Simulation on Energy Concentration and Release Process of Strain Rockburst. KSCE Journal of Civil Engineering, 2021, 25, 3835-3842.	0.9	5
12	Transparent, Robust, Nondrying, and Antifreezing Cellulose Organohydrogels for Energy Harvesting and Sensing Applications. ACS Applied Polymer Materials, 2021, 3, 3747-3754.	2.0	12
13	Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Carbohydrate Polymers, 2021, 265, 118078.	5.1	86
14	In situ exfoliated silk fibroin nanoribbons enhanced chitin hydrogel for bile duct restoration. Chemical Engineering Journal, 2021, 422, 130088.	6.6	9
15	Biocompatible, antibacterial and anti-inflammatory zinc ion cross-linked quaternized cellulose‑sodium alginate composite sponges for accelerated wound healing. International Journal of Biological Macromolecules, 2021, 191, 27-39.	3.6	27
16	Flexible, anti-freezing self-charging power system composed of cellulose based supercapacitor and triboelectric nanogenerator. Carbohydrate Polymers, 2021, 274, 118667.	5.1	32
17	Highly self-healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture. Carbohydrate Polymers, 2021, 273, 118547.	5.1	42
18	Optimization Analysis of Excavation Procedure Design of Underground Powerhouses under High In Situ Stress in China. Applied Sciences (Switzerland), 2021, 11, 10252.	1.3	1

#	Article	IF	CITATIONS
19	Multifunctional Dynamic Enamineâ€Based Hydrogels with Onâ€Demand Removability for Wound Healing. Advanced Materials Interfaces, 2021, 8, 2101855.	1.9	7
20	Strong cellulose hydrogel as underwater superoleophobic coating for efficient oil/water separation. Carbohydrate Polymers, 2020, 229, 115467.	5.1	65
21	Flexible and strong Fe3O4/cellulose composite film as magnetic and UV sensor. Applied Surface Science, 2020, 507, 145092.	3.1	30
22	Temperature and time-dependent self-assembly and gelation behavior of chitin in aqueous KOH/urea solution. Giant, 2020, 4, 100038.	2.5	15
23	Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. Journal of Materials Chemistry A, 2020, 8, 13935-13941.	5.2	140
24	Universal preparation of cellulose-based colorimetric sensor for heavy metal ion detection. Carbohydrate Polymers, 2020, 236, 116037.	5.1	20
25	Construction and structure-activity mechanism of polysaccharide nano-selenium carrier. Carbohydrate Polymers, 2020, 236, 116052.	5.1	48
26	Flexible and Transparent Cellulose-Based Ionic Film as a Humidity Sensor. ACS Applied Materials & Interfaces, 2020, 12, 7631-7638.	4.0	105
27	An easy and unique design strategy for insoluble humic acid/cellulose nanocomposite beads with highly enhanced adsorption performance of low concentration ciprofloxacin in water. Bioresource Technology, 2020, 302, 122812.	4.8	26
28	<i>In Situ</i> Synthesis of Ag–Fe ₃ O ₄ Nanoparticles Immobilized on Pure Cellulose Microspheres as Recyclable and Biodegradable Catalysts. ACS Omega, 2020, 5, 8839-8846.	1.6	23
29	Transparent, Antifreezing, Ionic Conductive Cellulose Hydrogel with Stable Sensitivity at Subzero Temperature. ACS Applied Materials & Interfaces, 2019, 11, 41710-41716.	4.0	141
30	Customizable Multidimensional Self-Wrinkling Structure Constructed via Modulus Gradient in Chitosan Hydrogels. Chemistry of Materials, 2019, 31, 10032-10039.	3.2	55
31	Effect of electrolyte on regenerated cellulose film as gold nanoparticle carrier. Carbohydrate Polymers, 2019, 210, 234-244.	5.1	17
32	Controllable Wrinkling Patterns on Chitosan Microspheres Generated from Self-Assembling Metal Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 22824-22833.	4.0	20
33	Strong, transparent cellulose film as gas barrier constructed via water evaporation induced dense packing. Journal of Membrane Science, 2019, 585, 99-108.	4.1	42
34	Cellulose/Chitosan Composite Multifilament Fibers with Two-Switch Shape Memory Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 6981-6990.	3.2	62
35	Mechanically Strong Chitin Fibers with Nanofibril Structure, Biocompatibility, and Biodegradability. Chemistry of Materials, 2019, 31, 2078-2087.	3.2	66
36	Robust chitin films with good biocompatibility and breathable properties. Carbohydrate Polymers, 2019, 212, 361-367.	5.1	46

#	Article	IF	CITATIONS
37	Construction of cellulose/ZnO composite microspheres in NaOH/zinc nitrate aqueous solution via one-step method. Cellulose, 2019, 26, 557-568.	2.4	17
38	Pd/TiO ₂ @ Carbon Microspheres Derived from Chitin for Highly Efficient Photocatalytic Degradation of Volatile Organic Compounds. ACS Sustainable Chemistry and Engineering, 2019, 7, 1658-1666.	3.2	34
39	O/W Pickering Emulsion Templated Organo-hydrogels with Enhanced Mechanical Strength and Energy Storage Capacity. ACS Applied Bio Materials, 2019, 2, 480-487.	2.3	26
40	Mechanically Strong Multifilament Fibers Spun from Cellulose Solution via Inducing Formation of Nanofibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 5314-5321.	3.2	56
41	Fabrication of cellulose nanofibers from waste brown algae and their potential application as milk thickeners. Food Hydrocolloids, 2018, 79, 473-481.	5.6	66
42	Influences of Coagulation Conditions on the Structure and Properties of Regenerated Cellulose Filaments via Wet-Spinning in LiOH/Urea Solvent. ACS Sustainable Chemistry and Engineering, 2018, 6, 4056-4067.	3.2	47
43	Rubbery Chitosan/Carrageenan Hydrogels Constructed through an Electroneutrality System and Their Potential Application as Cartilage Scaffolds. Biomacromolecules, 2018, 19, 340-352.	2.6	70
44	Recent advances in chitin based materials constructed via physical methods. Progress in Polymer Science, 2018, 82, 1-33.	11.8	276
45	Cationic hydrophobicity promotes dissolution of cellulose in aqueous basic solution by freezing–thawing. Physical Chemistry Chemical Physics, 2018, 20, 14223-14233.	1.3	48
46	Induction of mesenchymal stem cell differentiation in the absence of soluble inducer for cutaneous wound regeneration by a chitin nanofiberâ€based hydrogel. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e867-e880.	1.3	36
47	Strength enhanced hydrogels constructed from agarose in alkali/urea aqueous solution and their application. Chemical Engineering Journal, 2018, 331, 177-184.	6.6	48
48	Lyotropic liquid crystal self-assembly of H2O2-hydrolyzed chitin nanocrystals. Carbohydrate Polymers, 2018, 196, 66-72.	5.1	19
49	One-step synthesis of size-tunable gold nanoparticles immobilized on chitin nanofibrils via green pathway and their potential applications. Chemical Engineering Journal, 2017, 315, 573-582.	6.6	44
50	Ampholytic microspheres constructed from chitosan and carrageenan in alkali/urea aqueous solution for purification of various wastewater. Chemical Engineering Journal, 2017, 317, 766-776.	6.6	72
51	Translational Entropy and Dispersion Energy Jointly Drive the Adsorption of Urea to Cellulose. Journal of Physical Chemistry B, 2017, 121, 2244-2251.	1.2	28
52	Cation/macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 7486-7490.	1.3	17
53	Recyclable Universal Solvents for Chitin to Chitosan with Various Degrees of Acetylation and Construction of Robust Hydrogels. ACS Sustainable Chemistry and Engineering, 2017, 5, 2725-2733.	3.2	87
54	Dissolution and Metastable Solution of Cellulose in NaOH/Thiourea at 8 °C for Construction of Nanofibers. Journal of Physical Chemistry B, 2017, 121, 1793-1801.	1.2	39

#	Article	IF	CITATIONS
55	Weak interactions and their impact on cellulose dissolution in an alkali/urea aqueous system. Physical Chemistry Chemical Physics, 2017, 19, 17909-17917.	1.3	27
56	Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy. Journal of Materials Chemistry B, 2017, 5, 2952-2963.	2.9	70
57	Influence of cation on the cellulose dissolution investigated by MD simulation and experiments. Cellulose, 2017, 24, 4641-4651.	2.4	18
58	High-Strength Films Consisted of Oriented Chitosan Nanofibers for Guiding Cell Growth. Biomacromolecules, 2017, 18, 3904-3912.	2.6	48
59	Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. Carbohydrate Polymers, 2017, 174, 830-840.	5.1	108
60	Cellulose gel dispersions: fascinating green particles for the stabilization of oil/water Pickering emulsion. Cellulose, 2017, 24, 207-217.	2.4	36
61	Functional Polymeric Materials Based on Cellulose. International Journal of Polymer Science, 2016, 2016, 1-2.	1.2	4
62	Recent advances in regenerated cellulose materials. Progress in Polymer Science, 2016, 53, 169-206.	11.8	775
63	Hydrophobic Modification of Chitin Whisker and Its Potential Application in Structuring Oil. Langmuir, 2015, 31, 1641-1648.	1.6	55
64	Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature. Cellulose, 2015, 22, 339-349.	2.4	113
65	Intermolecular Interaction and the Extended Wormlike Chain Conformation of Chitin in NaOH/Urea Aqueous Solution. Biomacromolecules, 2015, 16, 1410-1417.	2.6	164
66	Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels. Biomacromolecules, 2015, 16, 3499-3507.	2.6	105
67	Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. Journal of Materials Science, 2014, 49, 2235-2242.	1.7	86
68	Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose, 2014, 21, 1239-1250.	2.4	59
69	Characterization of new sorbent constructed from Fe3O4/chitin magnetic beads for the dynamic adsorption of Cd2+ ions. Journal of Materials Science, 2014, 49, 123-133.	1.7	35
70	Advances in Cellulose Hydrophobicity Improvement. ACS Symposium Series, 2014, , 241-274.	0.5	8
71	Electrolyte effect on gelation behavior of oppositely charged nanocrystalline cellulose and polyelectrolyte. Carbohydrate Polymers, 2014, 114, 57-64.	5.1	15
72	Antimicrobial fibers based on chitosan and polyvinyl-alcohol. Fibers and Polymers, 2014, 15, 1357-1363.	1.1	11

#	Article	IF	CITATIONS
73	Portable Visible-Light Photocatalysts Constructed from Cu ₂ 0 Nanoparticles and Graphene Oxide in Cellulose Matrix. Journal of Physical Chemistry C, 2014, 118, 7202-7210.	1.5	66
74	Intermolecular Interactions and 3D Structure in Cellulose–NaOH–Urea Aqueous System. Journal of Physical Chemistry B, 2014, 118, 10250-10257.	1.2	88
75	Investigation of the scaling law on gelation of oppositely charged nanocrystalline cellulose and polyelectrolyte. Carbohydrate Polymers, 2014, 105, 214-221.	5.1	21
76	Structure of poly(N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. Journal of Colloid and Interface Science, 2014, 430, 157-165.	5.0	70
77	Layerâ€byâ€layer structured gelatin nanofiber membranes with photoinduced antibacterial functions. Journal of Applied Polymer Science, 2013, 128, 970-975.	1.3	14
78	Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix. Chemical Engineering Journal, 2013, 234, 124-131.	6.6	90
79	Gelation behavior of cellulose in NaOH/urea aqueous system via cross-linking. Cellulose, 2013, 20, 1669-1677.	2.4	67
80	Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature. Carbohydrate Polymers, 2013, 92, 1315-1320.	5.1	52
81	Rheological Behaviors and Miscibility of Mixture Solution of Polyaniline and Cellulose Dissolved in an Aqueous System. Biomacromolecules, 2012, 13, 2370-2378.	2.6	32
82	Effect of stirring conditions on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Journal of Applied Polymer Science, 2012, 126, E470.	1.3	13
83	Interaction between –OH groups of methylcellulose and solvent in NaOH/urea aqueous system at low temperature. Cellulose, 2012, 19, 671-678.	2.4	17
84	Investigation on Metastable Solution of Cellulose Dissolved in NaOH/Urea Aqueous System at Low Temperature. Journal of Physical Chemistry B, 2011, 115, 12801-12808.	1.2	34
85	Gelatin nanofibers fabricated by extruding immiscible polymer solution blend and their application in tissue engineering. Journal of Materials Chemistry, 2011, 21, 18674.	6.7	12