Naoki Toyooka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6973579/publications.pdf

Version: 2024-02-01

186265 276875 2,746 143 28 41 citations h-index g-index papers 148 148 148 2817 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Kinetic studies of AKR1B10, human aldose reductase-like protein: Endogenous substrates and inhibition by steroids. Archives of Biochemistry and Biophysics, 2009, 487, 1-9.	3.0	94
2	Quercetin Decreases Claudin-2 Expression Mediated by Up-Regulation of microRNA miR-16 in Lung Adenocarcinoma A549 Cells. Nutrients, 2015, 7, 4578-4592.	4.1	79
3	Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2079-2088.	4.1	70
4	Alkaloids Indolizidine 235 Bâ \in 2, Quinolizidine 1-epi-207I, and the Tricyclic 205B are Potent and Selective Noncompetitive Inhibitors of Nicotinic Acetylcholine Receptors. Molecular Pharmacology, 2004, 66, 1061-1069.	2.3	68
5	Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10. Bioorganic and Medicinal Chemistry, 2010, 18, 2485-2490.	3.0	66
6	Highly stereoselective construction of trans(2,3)-cis(2,6)-trisubstituted piperidines: An application to the chiral synthesis of Dendrobates alkaloids. Tetrahedron, 1997, 53, 9553-9574.	1.9	65
7	2-Piperidone Type of Chiral Building Block for 3-Piperidinol Alkaloid Synthesis. Journal of Organic Chemistry, 1999, 64, 4914-4919.	3.2	62
8	Synthesis of Alkaloid 223A and a Structural Revision. Organic Letters, 2002, 4, 1715-1717.	4.6	60
9	Roles of rat and human aldo–keto reductases in metabolism of farnesol and geranylgeraniol. Chemico-Biological Interactions, 2011, 191, 261-268.	4.0	57
10	Kaempherol and Luteolin Decrease Claudin-2 Expression Mediated by Inhibition of STAT3 in Lung Adenocarcinoma A549 Cells. Nutrients, 2017, 9, 597.	4.1	57
11	Photoinduced Generation of Acyl Radicals from Simple Aldehydes, Access to 3-Acyl-4-arylcoumarin Derivatives, and Evaluation of Their Antiandrogenic Activities. Journal of Organic Chemistry, 2018, 83, 1988-1996.	3.2	57
12	Selective Inhibition of the Tumor Marker AKR1B10 by Antiinflammatory N-Phenylanthranilic Acids and Glycyrrhetic Acid. Biological and Pharmaceutical Bulletin, 2010, 33, 886-890.	1.4	48
13	Selective Inhibition of Human Type-5 17β-Hydroxysteroid Dehydrogenase (AKR1C3) by Baccharin, a Component of Brazilian Propolis. Journal of Natural Products, 2012, 75, 716-721.	3.0	43
14	Claudin-5, -7, and -18 suppress proliferation mediated by inhibition of phosphorylation of Akt in human lung squamous cell carcinoma. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 293-302.	4.1	43
15	Critical role of Cav3.2 T-type calcium channels in the peripheral neuropathy induced by bortezomib, a proteasome-inhibiting chemotherapeutic agent, in mice. Toxicology, 2019, 413, 33-39.	4.2	42
16	Total Synthesis of the Antipode of Alkaloid 205 B. Angewandte Chemie - International Edition, 2003, 42, 3808-3810.	13.8	41
17	Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1170-1178.	4.1	41
18	Synthesis and antitumor evaluation of arctigenin derivatives based on antiausterity strategy. European Journal of Medicinal Chemistry, 2013, 60, 76-88.	5.5	40

#	Article	IF	Citations
19	Autophagy inhibition enhances anticancer efficacy of artepillin C, a cinnamic acid derivative in Brazilian green propolis. Biochemical and Biophysical Research Communications, 2018, 497, 437-443.	2.1	37
20	Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells. Journal of Biological Chemistry, 2017, 292, 2411-2421.	3.4	36
21	Enantioselective Syntheses of (â^')- and (+)-Monomorine I. Journal of Organic Chemistry, 2008, 73, 4575-4577.	3.2	35
22	The Role of AKR1B10 in Physiology and Pathophysiology. Metabolites, 2021, 11, 332.	2.9	35
23	Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo–keto reductase 1B10. Chemico-Biological Interactions, 2015, 230, 30-39.	4.0	34
24	Structure–activity relationship of flavonoids as potent inhibitors of carbonyl reductase 1 (CBR1). Fìtoterapìâ, 2015, 101, 51-56.	2.2	33
25	Human carbonyl reductase 4 is a mitochondrial NADPH-dependent quinone reductase. Biochemical and Biophysical Research Communications, 2008, 377, 1326-1330.	2.1	32
26	Development of Novel AKR1C3 Inhibitors as New Potential Treatment for Castration-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 2020, 63, 10396-10411.	6.4	32
27	Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. Journal of Biological Chemistry, 2016, 291, 24787-24799.	3.4	31
28	Synthesis of poison-frog alkaloids 233A, 235U, and 251AA and their inhibitory effects on neuronal nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5872-5875.	2.2	30
29	Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism. Chemico-Biological Interactions, 2016, 256, 142-153.	4.0	29
30	\hat{l}_{\pm} -Pyrrolidinononanophenone provokes apoptosis of neuronal cells through alterations in antioxidant properties. Toxicology, 2017, 386, 93-102.	4.2	29
31	First enantioselective synthesis of (+)-quinolizidine: determination of the absolute stereochemistry. Tetrahedron Letters, 2003, 44, 569-570.	1.4	27
32	Synthesis of Potent and Selective Inhibitors of Aldo-Keto Reductase 1B10 and Their Efficacy against Proliferation, Metastasis, and Cisplatin Resistance of Lung Cancer Cells. Journal of Medicinal Chemistry, 2017, 60, 8441-8455.	6.4	27
33	Cystitis-Related Bladder Pain Involves ATP-Dependent HMGB1 Release from Macrophages and Its Downstream H2S/Cav3.2 Signaling in Mice. Cells, 2020, 9, 1748.	4.1	27
34	Highly Potent Antiausterity Agents from <i>Callistemon citrinus</i> and Their Mechanism of Action against the PANC-1 Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2020, 83, 2221-2232.	3.0	27
35	The enantioselective synthesis of poison-frog alkaloids (â^')-203A, (â^')-209B, (â^')-231C, (â^')-233D, and (â^')-235B″. Tetrahedron Letters, 2006, 47, 577-580.	1.4	26
36	Stereodivergent Process for the Synthesis of the Decahydroquinoline Type of Dendrobatid Alkaloids. Journal of Organic Chemistry, 2002, 67, 6078-6081.	3.2	25

#	Article	IF	CITATIONS
37	Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10. Toxicology and Applied Pharmacology, 2014, 278, 180-189.	2.8	25
38	In Silico Screening Identified Novel Small-molecule Antagonists of PAC1 Receptor. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 1-8.	2.5	25
39	Effects of ligand binding on the stability of aldo–keto reductases: Implications for stabilizer or destabilizer chaperones. Protein Science, 2016, 25, 2132-2141.	7.6	24
40	Blockade of T-type calcium channels by 6-prenylnaringenin, a hop component, alleviates neuropathic and visceral pain in mice. Neuropharmacology, 2018, 138, 232-244.	4.1	24
41	Chrysin enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells. Scientific Reports, 2019, 9, 13753.	3.3	24
42	Design and synthesis of functionalized coumarins as potential anti-austerity agents that eliminates cancer cells' tolerance to nutrition starvation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1779-1784.	2.2	24
43	Synthesis and structure–activity relationship of 2-phenyliminochromene derivatives as inhibitors for aldo–keto reductase (AKR) 1B10. Bioorganic and Medicinal Chemistry, 2013, 21, 6378-6384.	3.0	23
44	Timed Inhibition of Orexin System by Suvorexant Improved Sleep and Glucose Metabolism in Type 2 Diabetic db/db Mice. Endocrinology, 2016, 157, 4146-4157.	2.8	23
45	Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17β-hydroxysteroid dehydrogenase. Biochemical and Biophysical Research Communications, 2016, 472, 231-236.	2.1	23
46	Decrease in paracellular permeability and chemosensitivity to doxorubicin by claudin-1 in spheroid culture models of human lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 769-780.	4.1	23
47	Enzymatic characteristics of an aldo–keto reductase family protein (AKR1C15) and its localization in rat tissues. Archives of Biochemistry and Biophysics, 2007, 465, 136-147.	3.0	22
48	Enantioselective syntheses of two 5, 9E diastereomers of 223V, an alkaloid from the poison frog Dendrobates pumilio. Tetrahedron, 2005, 61, 1187-1198.	1.9	21
49	Characterization of a rat NADPH-dependent aldo-keto reductase (AKR1B13) induced by oxidative stress. Chemico-Biological Interactions, 2009, 178, 151-157.	4.0	21
50	Efficient Enantio- and Diastereodivergent Synthesis of Poison-Frog Alkaloids 2510 and trans-223B. Journal of Organic Chemistry, 2009, 74, 6784-6791.	3.2	21
51	The RING finger- and PDZ domain-containing protein PDZRN3 controls localization of the Mg2+ regulator claudin-16 in renal tube epithelial cells. Journal of Biological Chemistry, 2017, 292, 13034-13044.	3.4	21
52	Caffeic acid phenethyl ester potentiates gastric cancer cell sensitivity to doxorubicin and cisplatin by decreasing proteasome function. Anti-Cancer Drugs, 2019, 30, 251-259.	1.4	21
53	Flexible synthetic routes to poison-frog alkaloids of the 5,8-disubstituted indolizidine-class I: synthesis of common lactam chiral building blocks and application to the synthesis of (-)- 203A , (-)- 205A , and (-)- 219F . Beilstein Journal of Organic Chemistry, 2007, 3, 29.	2.2	20
54	Elevation of sensitivity to anticancer agents of human lung adenocarcinoma A549 cells by knockdown of claudin-2 expression in monolayer and spheroid culture models. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 470-479.	4.1	20

#	Article	IF	CITATIONS
55	Caffeic acid phenethyl ester down-regulates claudin-2 expression at the transcriptional and post-translational levels and enhances chemosensitivity to doxorubicin in lung adenocarcinoma A549 cells. Journal of Nutritional Biochemistry, 2018, 56, 205-214.	4.2	19
56	Enantioselective syntheses of poison-frog alkaloids: 219F and 221I and an epimer of 193E. Tetrahedron Letters, 2006, 47, 581-582.	1.4	18
57	Synthesis of non-prenyl analogues of baccharin as selective and potent inhibitors for aldo-keto reductase 1C3. Bioorganic and Medicinal Chemistry, 2014, 22, 5220-5233.	3.0	18
58	Chemical constituents of Callistemon citrinus from Egypt and their antiausterity activity against PANC-1 human pancreatic cancer cell line. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127352.	2.2	18
59	Molecular determinants for the stereospecific reduction of 3-ketosteroids and reactivity towards all-trans-retinal of a short-chain dehydrogenase/reductase (DHRS4). Archives of Biochemistry and Biophysics, 2009, 481, 183-190.	3.0	17
60	Kaempferide Enhances Chemosensitivity of Human Lung Adenocarcinoma A549 Cells Mediated by the Decrease in Phosphorylation of Akt and Claudin-2 Expression. Nutrients, 2020, 12, 1190.	4.1	17
61	Enantiodivergent synthesis of the quinolizidine poison frog alkaloid 195C. Tetrahedron, 2013, 69, 10311-10315.	1.9	16
62	Pathophysiological roles of autophagy and aldo-keto reductases in development of doxorubicin resistance in gastrointestinal cancer cells. Chemico-Biological Interactions, 2019, 314, 108839.	4.0	16
63	Synthesis and Biological Activities of the 3,5â€Disubstituted Indolizidine Poison Frog Alkaloid 239Q and Its Congeners. European Journal of Organic Chemistry, 2012, 2012, 7082-7092.	2.4	15
64	Synthesis of 8-hydroxy-2-iminochromene derivatives as selective and potent inhibitors of human carbonyl reductase 1. Organic and Biomolecular Chemistry, 2015, 13, 7487-7499.	2.8	15
65	Characterization of an Oligomeric Carbonyl Reductase of Dog Liver: Its Identity with Peroxisomal Tetrameric Carbonyl Reductase. Biological and Pharmaceutical Bulletin, 2007, 30, 1787-1791.	1.4	14
66	Rat Aldose Reductase-Like Protein (AKR1B14) Efficiently Reduces the Lipid Peroxidation Product 4-Oxo-2-nonenal. Biological and Pharmaceutical Bulletin, 2010, 33, 1886-1890.	1.4	14
67	(4 <i>Z</i> ,15 <i>Z</i>)â€Octadecadienoic Acid Inhibits Glycogen Synthase Kinaseâ€3β and Glucose Production in H4llE Cells. Lipids, 2017, 52, 295-301.	1.7	14
68	Chlorpheniramine Increases Paracellular Permeability to Marker Fluorescein Lucifer Yellow Mediated by Internalization of Occludin in Murine Colonic Epithelial Cells. Biological and Pharmaceutical Bulletin, 2017, 40, 1299-1305.	1.4	14
69	Targeting Nrf2-antioxidant signalling reverses acquired cabazitaxel resistance in prostate cancer cells. Journal of Biochemistry, 2021, 170, 89-96.	1.7	14
70	Structure-activity relationship for toxicity of \hat{l}_{\pm} -pyrrolidinophenones in human aortic endothelial cells. Forensic Toxicology, 2017, 35, 309-316.	2.4	13
71	A novel serine racemase inhibitor suppresses neuronal over-activation in vivo. Bioorganic and Medicinal Chemistry, 2017, 25, 3736-3745.	3.0	13
72	Increase in resistance to anticancer drugs involves occludin in spheroid culture model of lung adenocarcinoma A549 cells. Scientific Reports, 2018, 8, 15157.	3.3	13

#	Article	IF	Citations
73	Design and synthesis of novel anti-hyperalgesic agents based on 6-prenylnaringenin as the T-type calcium channel blockers. Bioorganic and Medicinal Chemistry, 2018, 26, 4410-4427.	3.0	13
74	Human dehydrogenase/reductase SDR family member 11 (DHRS11) and aldo-keto reductase 1C isoforms in comparison: Substrate and reaction specificity in the reduction of 11-keto-C19-steroids. Journal of Steroid Biochemistry and Molecular Biology, 2020, 199, 105586.	2.5	13
75	Significance of aldo-keto reductase 1C3 and ATP-binding cassette transporter B1 in gain of irinotecan resistance in colon cancer cells. Chemico-Biological Interactions, 2020, 332, 109295.	4.0	13
76	Anti-Austerity Activity of Thai Medicinal Plants: Chemical Constituents and Anti-Pancreatic Cancer Activities of Kaempferia parviflora. Plants, 2021, 10, 229.	3. 5	13
77	Syntheses of the Proposed Structures of Poison-Frog Alkaloids 179 and 207E and Their Inhibitory Effects on Neuronal Nicotinic Acetylcholine Receptors. Synlett, 2008, 2008, 61-64.	1.8	12
78	Hyperosmolarity-Induced Down-Regulation of Claudin-2 Mediated by Decrease in PKCÎ ² -Dependent GATA-2 in MDCK Cells. Journal of Cellular Physiology, 2015, 230, 2776-2787.	4.1	12
79	Roles of aldo-keto reductases 1B10 and 1C3 and ATP-binding cassette transporter in docetaxel tolerance. Free Radical Research, 2016, 50, 1296-1308.	3.3	12
80	Up-regulation of claudin-2 expression by aldosterone in colonic epithelial cells of mice fed with NaCl-depleted diets. Scientific Reports, 2017, 7, 12223.	3.3	12
81	Claudin-2 binding peptides, VPDSM and DSMKF, down-regulate claudin-2 expression and anticancer resistance in human lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118642.	4.1	12
82	Synthesis of a novel and potent small-molecule antagonist of PAC1 receptor for the treatment of neuropathic pain. European Journal of Medicinal Chemistry, 2020, 186, 111902.	5.5	12
83	Design, synthesis, and biological evaluation of novel (1-thioxo-1,2,3,4-tetrahydro-β-carbolin-9-yl)acetic acids as selective inhibitors for AKR1B1. Bioorganic and Medicinal Chemistry, 2012, 20, 356-367.	3.0	11
84	Long-chain fatty acids inhibit human members of the aldo-keto reductase 1C subfamily. Journal of Biochemistry, 2017, 162, 371-379.	1.7	11
85	Flavonol glycosides of Rosa multiflora regulates intestinal barrier function through inhibiting claudin expression in differentiated Caco-2 cells. Nutrition Research, 2019, 72, 92-104.	2.9	11
86	The novel small-molecule antagonist of PAC1 receptor attenuates formalin-induced inflammatory pain behaviors in mice. Journal of Pharmacological Sciences, 2019, 139, 129-132.	2.5	11
87	Polymorphisms in androgen metabolism genes with serum testosterone levels and prognosis in androgen-deprivation therapy. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 849.e11-849.e18.	1.6	11
88	Substrate Specificity of a Mouse Aldo-Keto Reductase (AKR1C12). Biological and Pharmaceutical Bulletin, 2006, 29, 2488-2492.	1.4	10
89	Characterization of rat and mouse NAD+-dependent $3\hat{l}\pm/17\hat{l}^2/20\hat{l}\pm$ -hydroxysteroid dehydrogenases and identification of substrate specificity determinants by site-directed mutagenesis. Archives of Biochemistry and Biophysics, 2007, 467, 76-86.	3.0	10
90	Characterization of rabbit aldose reductase-like protein with $3\hat{l}^2$ -hydroxysteroid dehydrogenase activity. Archives of Biochemistry and Biophysics, 2012, 527, 23-30.	3.0	10

#	Article	IF	Citations
91	Strategy for designing selective α-l-rhamnosidase inhibitors: Synthesis and biological evaluation of l-DMDP cyclic isothioureas. Bioorganic and Medicinal Chemistry, 2017, 25, 107-115.	3.0	10
92	Sibutramine facilitates apoptosis and contraction of aortic smooth muscle cells through elevating production of reactive oxygen species. European Journal of Pharmacology, 2018, 841, 113-121.	3.5	10
93	Clathrin-dependent endocytosis of claudin-2 by DFYSP peptide causes lysosomal damage in lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2326-2336.	2.6	9
94	Design, synthesis, and evaluation of novel inhibitors for wild-type human serine racemase. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 441-445.	2.2	9
95	Formal Syntheses of (â^')-Lepadiformines A, C, and (â^')-Fasicularin. Journal of Organic Chemistry, 2019, 84, 5222-5229.	3.2	9
96	Elevation of Chemosensitivity of Lung Adenocarcinoma A549 Spheroid Cells by Claudin-2 Knockdown through Activation of Glucose Transport and Inhibition of Nrf2 Signal. International Journal of Molecular Sciences, 2021, 22, 6582.	4.1	9
97	Facilitation of 9,10-phenanthrenequinone-elicited neuroblastoma cell apoptosis by NAD(P)H:quinone oxidoreductase 1. Chemico-Biological Interactions, 2018, 279, 10-20.	4.0	8
98	Sodium Citrate Increases Expression and Flux of Mg2+ Transport Carriers Mediated by Activation of MEK/ERK/c-Fos Pathway in Renal Tubular Epithelial Cells. Nutrients, 2018, 10, 1345.	4.1	8
99	Synthesis of 8-deoxypumiliotoxin 193H and 9-deoxyhomopumiliotoxin 207O. Tetrahedron Letters, 2018, 59, 3797-3800.	1.4	8
100	Fragranol A: A new class of spiro-triflavanoid hybrid with an unprecedented carbon skeleton from Anneslea fragrans. Tetrahedron Letters, 2020, 61, 152099.	1.4	8
101	Synthesis of Poison-Frog Alkaloids 237D, 207A, and Two Congeners of 235B' for Evaluation to Inhibitory Effect of Nicotinic Acetylcholine Receptors. Chemical and Pharmaceutical Bulletin, 2005, 53, 555-560.	1.3	7
102	Synthesis of long-chain fatty acid derivatives as a novel anti-Alzheimer's agent. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 604-608.	2.2	7
103	Instability of C154Y variant of aldo-keto reductase 1C3. Chemico-Biological Interactions, 2017, 276, 194-202.	4.0	7
104	ZO-2 Suppresses Cell Migration Mediated by a Reduction in Matrix Metalloproteinase 2 in Claudin-18-Expressing Lung Adenocarcinoma A549 Cells. Biological and Pharmaceutical Bulletin, 2019, 42, 247-254.	1.4	7
105	Activation of aldo-keto reductase family member 1B14 (AKR1B14) by bile acids: Activation mechanism and bile acid-binding site. Biochimie, 2011, 93, 1476-1486.	2.6	6
106	Stereoselective Total Synthesis of (–)â€Batzellasides A, B, and C. European Journal of Organic Chemistry, 2013, 2013, 2841-2848.	2.4	6
107	Synthesis and biological evaluation of N-(2-fluorophenyl)- $2\hat{l}^2$ -deoxyfuconojirimycin acetamide as a potent inhibitor for $l\pm l$ -fucosidases. Bioorganic and Medicinal Chemistry, 2013, 21, 6565-6573.	3.0	6
108	Substrate Specificity and Inhibitor Sensitivity of Rabbit 20α-Hydroxysteroid Dehydrogenase. Biological and Pharmaceutical Bulletin, 2013, 36, 1514-1518.	1.4	6

#	Article	IF	CITATIONS
109	Protective roles of aldo-keto reductase 1B10 and autophagy against toxicity induced by p-quinone metabolites of tert-butylhydroquinone in lung cancer A549 cells. Chemico-Biological Interactions, 2015, 234, 282-289.	4.0	6
110	Upâ€Regulation of Transient Receptor Potential Melastatin 6 Channel Expression by Tumor Necrosis Factorâ€i± in the Presence of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor. Journal of Cellular Physiology, 2017, 232, 2841-2850.	4.1	6
111	Increase in Toxicity of Anticancer Drugs by PMTPV, a Claudin-1-Binding Peptide, Mediated via Down-Regulation of Claudin-1 in Human Lung Adenocarcinoma A549 Cells. International Journal of Molecular Sciences, 2020, 21, 5909.	4.1	6
112	9,10-Phenanthrenequinone provokes dysfunction of brain endothelial barrier through down-regulating expression of claudin-5. Toxicology, 2021, 461, 152896.	4.2	6
113	Identification and Total Synthesis of Two Previously Unreported Odd-Chain Bis-Methylene-Interrupted Fatty Acids with a Terminal Olefin that Activate Protein Phosphatase, Mg2+/Mn2+-Dependent 1A (PPM1A) in Ovaries of the Limpet Cellana toreuma. Marine Drugs, 2019, 17, 410.	4.6	5
114	Rescue of tight junctional localization of a claudin-16 mutant D97S by antimalarial medicine primaquine in Madin-Darby canine kidney cells. Scientific Reports, 2019, 9, 9647.	3.3	5
115	Total Synthesis of Decahydroquinoline Poison Frog Alkaloids ent-cis-195A and cis-211A. Molecules, 2021, 26, 7529.	3.8	5
116	Abietane diterpenes from Abies spectabilis and their anti-pancreatic cancer activity against the MIA PaCa-2 cell line. Bioorganic and Medicinal Chemistry Letters, 2022, 66, 128723.	2.2	5
117	Total Synthesis of 4'â€ <i>O</i> àâ€Methylgrynullarin and Related Isoflavone Natural Products. ChemistrySelect, 2022, 7, .	1.5	5
118	Enhancement of Endothelial Barrier Permeability by Mitragynine. Biological and Pharmaceutical Bulletin, 2017, 40, 1779-1783.	1.4	4
119	Novel Atg4B inhibitors potentiate cisplatin therapy in lung cancer cells through blockade of autophagy. Computational Toxicology, 2019, 12, 100095.	3.3	4
120	Upregulation of transient receptor potential melastatin 6 channel expression by rosiglitazone and allâ€transâ€retinoic acid in erlotinibâ€treated renal tubular epithelial cells. Journal of Cellular Physiology, 2019, 234, 8951-8962.	4.1	4
121	Fragranone C: a new dihydrochalcone glucopyranoside from <i>Anneslea fragrans</i> twigs. Natural Product Research, 2021, 35, 3895-3900.	1.8	4
122	Loxoprofen enhances intestinal barrier function via generation of its active metabolite by carbonyl reductase 1 in differentiated Caco-2Âcells. Chemico-Biological Interactions, 2021, 348, 109634.	4.0	4
123	Development of cisplatin resistance in breast cancer MCF7 cells by up-regulating aldo-keto reductase 1C3 expression, glutathione synthesis and proteasomal proteolysis. Journal of Biochemistry, 2022, 171, 97-108.	1.7	4
124	Discovery and Structure-Based Optimization of Novel Atg4B Inhibitors for the Treatment of Castration-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 2022, 65, 4878-4892.	6.4	4
125	Evaluation of compound selectivity of aldo-keto reductases using differential scanning fluorimetry. Journal of Biochemistry, 2016, 161, mvw063.	1.7	3
126	AS1949490, an inhibitor of 5′-lipid phosphatase SHIP2, promotes protein kinase C-dependent stabilization of brain-derived neurotrophic factor mRNA in cultured cortical neurons. European Journal of Pharmacology, 2019, 851, 69-79.	3.5	3

#	Article	IF	CITATIONS
127	Design and synthesis of pyrido [2,3-d] pyrimidine derivatives for a novel PAC1 receptor antagonist. European Journal of Medicinal Chemistry, 2022, 231, 114160.	5.5	3
128	Suvorexant and mirtazapine improve chronic pain-related changes in parameters of sleep and voluntary physical performance in mice with sciatic nerve ligation. PLoS ONE, 2022, 17, e0264386.	2.5	3
129	Mouse Akr1cl gene product is a prostaglandin D2 11-ketoreductase with strict substrate specificity. Archives of Biochemistry and Biophysics, 2019, 674, 108096.	3.0	2
130	Prenylflavanones as Novel T-Type Calcium Channel Blockers Useful for Pain Therapy. Natural Product Communications, 2019, 14, 1934578X1987344.	0.5	2
131	Synthesis and olfactory properties of Phantolide analogues in racemic and optically active forms. Flavour and Fragrance Journal, 2019, 34, 113-123.	2.6	2
132	Divergent Syntheses of Pumiliotoxin‶ype Poisonâ€Frog Alkaloids. ChemistrySelect, 2021, 6, 1939-1945.	1.5	2
133	Protective Effect of Aldo–keto Reductase 1B1 Against Neuronal Cell Damage Elicited by 4′-Fluoro-α-pyrrolidinononanophenone. Neurotoxicity Research, 2021, 39, 1360-1371.	2.7	2
134	Inhibitory activities of anthraquinone and xanthone derivatives against transthyretin amyloidogenesis. Bioorganic and Medicinal Chemistry, 2021, 44, 116292.	3.0	2
135	Aldo-keto reductase inhibitors increase the anticancer effects of tyrosine kinase inhibitors in chronic myelogenous leukemia. Journal of Pharmacological Sciences, 2021, 147, 1-8.	2.5	2
136	Bombyx mori-derived aldo-keto reductase AKR2E8 detoxifies aldehydes present in mulberry leaves. Chemico-Biological Interactions, 2022, 351, 109717.	4.0	2
137	Porcine aldo-keto reductase 1C subfamily members AKR1C1 and AKR1C4: Substrate specificity, inhibitor sensitivity and activators. Journal of Steroid Biochemistry and Molecular Biology, 2022, 221, 106113.	2.5	2
138	Identification of a determinant for strict NADP(H)-specificity and high sensitivity to mixed-type steroid inhibitor of rabbit aldo–keto reductase 1C33 by site-directed mutagenesis. Archives of Biochemistry and Biophysics, 2015, 569, 19-25.	3.0	1
139	Characterization of aldo-keto reductase 1C subfamily members encoded in two rat genes (akr1c19 and) Tj ETQq1 Biophysics, 2021, 700, 108755.	1 0.78431 3.0	14 rgBT /0\ 1
140	Divergent Synthesis of Decahydroquinolineâ€Type Poisonâ€Frog Alkaloids. ChemistrySelect, 2022, 7, .	1.5	1
141	Coupling of acceptor-substituted diazo compounds and tertiary thioamides: synthesis of enamino carbonyl compounds and their pharmacological evaluation. RSC Advances, 2022, 12, 19431-19444.	3.6	1
142	Probing AKR1C30 and AKR1C31 with Site-Directed Mutagenesis: Identifying the Roles of Residues 54 and 56 in the Binding of Substrates and Inhibitors. Biological and Pharmaceutical Bulletin, 2014, 37, 1848-1852.	1.4	0
143	A divergent entry to 1,2,3,9-tetrahydroxyquinolizidines. Tetrahedron Letters, 2020, 61, 152030.	1.4	0