List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6973486/publications.pdf Version: 2024-02-01

AMY F FAST

#	Article	IF	CITATIONS
1	Dam removal: Listening in. Water Resources Research, 2017, 53, 5229-5246.	1.7	166
2	Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change. Geomorphology, 2015, 228, 765-786.	1.1	163
3	Large-scale dam removal on the Elwha River, Washington, USA: Source-to-sink sediment budget and synthesis. Geomorphology, 2015, 246, 729-750.	1.1	131
4	Conceptualizing Ecological Responses to Dam Removal: If You Remove It, What's to Come?. BioScience, 2019, 69, 26-39.	2.2	96
5	Channel evolution on the dammed Elwha River, Washington, USA. Geomorphology, 2011, 127, 71-87.	1.1	82
6	Morphodynamic evolution following sediment release from the world's largest dam removal. Scientific Reports, 2018, 8, 13279.	1.6	77
7	Influence of the Atchafalaya River on recent evolution of the chenier-plain inner continental shelf, northern Gulf of Mexico. Continental Shelf Research, 2005, 25, 91-112.	0.9	72
8	Geochemical evolution of arc magmatism during arc-continent collision, South Mayo, Ireland. Geology, 2001, 29, 543.	2.0	71
9	A general model of arc-continent collision and subduction polarity reversal from Taiwan and the Irish Caledonides. Geological Society Special Publication, 2003, 219, 81-98.	0.8	68
10	Sedimentation processes in a coral reef embayment: Hanalei Bay, Kauai. Marine Geology, 2009, 264, 140-151.	0.9	68
11	Geomorphic and Sedimentary Effects of Modern Climate Change: Current and Anticipated Future Conditions in the Western United States. Reviews of Geophysics, 2020, 58, e2019RG000692.	9.0	68
12	Subduction erosion of the Jurassic Talkeetna-Bonanza arc and the Mesozoic accretionary tectonics of western North America. Geology, 2005, 33, 881.	2.0	67
13	Stratigraphic and geochemical evolution of an oceanic arc upper crustal section: The Jurassic Talkeetna Volcanic Formation, south-central Alaska. Bulletin of the Geological Society of America, 2005, 117, 902.	1.6	66
14	Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes. Earth-Science Reviews, 2013, 116, 57-84.	4.0	66
15	Geomorphic Evolution of a Gravelâ€Bed River Under Sedimentâ€6tarved Versus Sedimentâ€Rich Conditions: River Response to the World's Largest Dam Removal. Journal of Geophysical Research F: Earth Surface, 2018, 123, 3338-3369.	1.0	66
16	Arc–continent collision and the formation of continental crust: a new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland. Journal of the Geological Society, 2009, 166, 485-500.	0.9	63
17	Geochemical evolution of the Dras-Kohistan Arc during collision with Eurasia: Evidence from the Ladakh Himalaya, India. Island Arc, 2002, 11, 255-273.	0.5	57
18	A model for continental crust genesis by arc accretion: rare earth element evidence from the Irish Caledonides. Earth and Planetary Science Letters, 2002, 203, 861-877.	1.8	52

#	Article	IF	CITATIONS
19	Coastal mudflat accretion under energetic conditions, Louisiana chenier-plain coast, USA. Marine Geology, 2005, 214, 27-47.	0.9	51
20	Laurentian crustal recycling in the Ordovician Grampian Orogeny: Nd isotopic evidence from western Ireland. Geological Magazine, 2004, 141, 195-207.	0.9	46
21	Fluvial–Eolian Interactions In Sediment Routing and Sedimentary Signal Buffering: An Example From the Indus Basin and Thar Desert. Journal of Sedimentary Research, 2015, 85, 715-728.	0.8	40
22	A regime shift in sediment export from a coastal watershed during a record wet winter, California: Implications for landscape response to hydroclimatic extremes. Earth Surface Processes and Landforms, 2018, 43, 2562-2577.	1.2	36
23	Tracing the evolving flux from the subducting plate in the Tonga-Kermadec arc system using boron in volcanic glass. Geochimica Et Cosmochimica Acta, 2001, 65, 3347-3364.	1.6	34
24	Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian–hillslope–fluvial interactions, Colorado River corridor, Arizona, USA. Geomorphology, 2014, 220, 68-80.	1.1	34
25	Rapid tectonic exhumation, detachment faulting and orogenic collapse in the Caledonides of western Ireland. Tectonophysics, 2004, 384, 91-113.	0.9	33
26	Sedimentary Processes in Modern and Ancient Oceanic Arc Settings: Evidence from the Jurassic Talkeetna Formation of Alaska and the Mariana and Tonga Arcs, Western Pacific. Journal of Sedimentary Research, 2006, 76, 493-514.	0.8	33
27	Detrital U–Pb zircon dating of lower Ordovician syn-arc-continent collision conglomerates in the Irish Caledonides. Tectonophysics, 2009, 479, 165-174.	0.9	28
28	Reprint of: Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change. Geomorphology, 2015, 246, 687-708.	1.1	28
29	Channelâ€planform evolution in four rivers of Olympic National Park, Washington, USA: the roles of physical drivers and trophic cascades. Earth Surface Processes and Landforms, 2017, 42, 1011-1032.	1.2	27
30	Application of sedimentary-structure interpretation to geoarchaeological investigations in the Colorado River Corridor, Grand Canyon, Arizona, USA. Geomorphology, 2008, 101, 497-509.	1.1	23
31	Supply and dispersal of flood sediment from a steep, tropical watershed: Hanalei Bay, Kaua'i, Hawai'i, USA. Bulletin of the Geological Society of America, 2009, 121, 574-585.	1.6	23
32	The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics. Aeolian Research, 2018, 32, 228-245.	1.1	23
33	The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA. Aeolian Research, 2018, 32, 154-169.	1.1	21
34	Fire (plus) flood (equals) beach: coastal response to an exceptional river sediment discharge event. Scientific Reports, 2022, 12, 3848.	1.6	21
35	Short-term variability of 7Be atmospheric deposition and watershed response in a Pacific coastal stream, Monterey Bay, California, USA. Journal of Environmental Radioactivity, 2013, 120, 94-103.	0.9	19
36	The origin and significance of the Delaney Dome Formation, Connemara, Ireland. Journal of the Geological Society, 2002, 159, 95-103.	0.9	18

#	Article	IF	CITATIONS
37	River response to largeâ€dam removal in a Mediterranean hydroclimatic setting: Carmel River, California, USA. Earth Surface Processes and Landforms, 2018, 43, 3009-3021.	1.2	18
38	Late Pleistocene to Holocene sedimentation and hydrocarbon seeps on the continental shelf of a steep, tectonically active margin, southern California, USA. Marine Geophysical Researches, 2009, 30, 193-206.	0.5	17
39	Flooding duration and volume more important than peak discharge in explaining 18 years of gravel–cobble river change. Earth Surface Processes and Landforms, 2021, 46, 3194-3212.	1.2	16
40	Linking Mesoscale Meteorology With Extreme Landscape Response: Effects of Narrow Cold Frontal Rainbands (NCFR). Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005675.	1.0	13
41	Slope failure and mass transport processes along the Queen Charlotte Fault, southeastern Alaska. Geological Society Special Publication, 2019, 477, 69-83.	0.8	12
42	Quantifying and forecasting changes in the areal extent of river valley sediment in response to altered hydrology and land cover. Progress in Physical Geography, 2018, 42, 739-764.	1.4	10
43	Watershed Sediment Yield Following the 2018 Carr Fire, Whiskeytown National Recreation Area, Northern California. Earth and Space Science, 2021, 8, e2021EA001828.	1.1	10
44	A Closer Look at an Undersea Source of Alaskan Earthquakes. Eos, 2017, 98, .	0.1	9
45	21st-century stagnation in unvegetated sand-sea activity. Nature Communications, 2022, 13, .	5.8	9
46	Slope failure and mass transport processes along the Queen Charlotte Fault Zone, western British Columbia. Geological Society Special Publication, 2019, 477, 85-106.	0.8	6
47	Geoscientists, Who Have Documented the Rapid and Accelerating Climate Crisis for Decades, Are Now Pleading for Immediate Collective Action. Geophysical Research Letters, 2021, 48, e2021GL096644.	1.5	3
48	Comment on "Geochemistry of buried river sediments from Ghaggar Plains, NW India: Multi-proxy records of variations in provenance, paleoclimate, and paleovegetation patterns in the late quaternary―by Ajit Singh, Debajyoti Paul, Rajiv Sinha, Kristina J. Thomsen, Sanjeev Gupta. Palaeogeography. Palaeoclimatology. Palaeoecology. 2016, 455, 65-67.	1.0	2
49	Reply to †Wolfâ€triggered trophic cascades and stream channel dynamics in Olympic National Park: a comment on East <i>et al</i> . (2017)' by Robert Beschta and William Ripple. Earth Surface Processes and Landforms, 2018, 43, 936-939.	1.2	1
50	Commentary: Variability in Shelf Sedimentation in Response to Fluvial Sediment Supply and Coastal Erosion Over the Past 1,000 Years in Monterey Bay, CA, United States. Frontiers in Earth Science, 2019, 7, .	0.8	1
51	Strategic Plan for the <i>Journal of Geophysical Research—Earth Surface</i> . Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	1
52	Thank You to Our 2021 Reviewers, and a New Coâ€Reviewing Protocol. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	1
53	Reply to Comment on "Detrital U–Pb zircon dating of lower Ordovician syn-arc–continent collision conglomerates in the Irish Caledonides―by Peter D. Clift, Andrew Carter, Amy E. Draut, Hoang Van Long, David M. Chew, Hans A. Schouten, Tectonophysics 479 (2009), 165–174 (doi:10.1016/i.tecto.2008.07.018). Tectonophysics. 2010. 490. 138-139.	0.9	0
54	Thank You to Our 2018 Peer Reviewers. Journal of Geophysical Research F: Earth Surface, 2019, 124, 868-873.	1.0	0

#	Article	IF	CITATIONS
55	Thank You to Our 2019 Reviewers. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005650.	1.0	0
56	Thank You to Our 2020 Reviewers. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006154.	1.0	0
57	Plain Language Summaries to be Required for Submission to Journal of Geophysical Research: Earth Surface. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006323.	1.0	0